The Construction of Spin Foam Vertex Amplitudes

Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Bianchi, E., Hellmann, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149216
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Construction of Spin Foam Vertex Amplitudes / E. Bianchi, F. Hellmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 105 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149216
record_format dspace
spelling irk-123456789-1492162019-02-20T01:28:29Z The Construction of Spin Foam Vertex Amplitudes Bianchi, E. Hellmann, F. Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine. 2013 Article The Construction of Spin Foam Vertex Amplitudes / E. Bianchi, F. Hellmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 105 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T25; 81T45 DOI: http://dx.doi.org/10.3842/SIGMA.2013.008 http://dspace.nbuv.gov.ua/handle/123456789/149216 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
format Article
author Bianchi, E.
Hellmann, F.
spellingShingle Bianchi, E.
Hellmann, F.
The Construction of Spin Foam Vertex Amplitudes
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bianchi, E.
Hellmann, F.
author_sort Bianchi, E.
title The Construction of Spin Foam Vertex Amplitudes
title_short The Construction of Spin Foam Vertex Amplitudes
title_full The Construction of Spin Foam Vertex Amplitudes
title_fullStr The Construction of Spin Foam Vertex Amplitudes
title_full_unstemmed The Construction of Spin Foam Vertex Amplitudes
title_sort construction of spin foam vertex amplitudes
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149216
citation_txt The Construction of Spin Foam Vertex Amplitudes / E. Bianchi, F. Hellmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 105 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bianchie theconstructionofspinfoamvertexamplitudes
AT hellmannf theconstructionofspinfoamvertexamplitudes
AT bianchie constructionofspinfoamvertexamplitudes
AT hellmannf constructionofspinfoamvertexamplitudes
first_indexed 2023-05-20T17:32:15Z
last_indexed 2023-05-20T17:32:15Z
_version_ 1796153506014429184