Integrable Flows for Starlike Curves in Centroaffine Space

We construct integrable hierarchies of flows for curves in centroaffine R³ through a natural pre-symplectic structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations for the differential invariants are closely connected with the Boussinesq hierarch...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Calini, A., Ivey, T., Beffa, G.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149224
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrable Flows for Starlike Curves in Centroaffine Space / A. Calini, T. Ivey, G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We construct integrable hierarchies of flows for curves in centroaffine R³ through a natural pre-symplectic structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations for the differential invariants are closely connected with the Boussinesq hierarchy, and prove that the restricted hierarchy of flows on curves that project to conics in RP² induces the Kaup-Kuperschmidt hierarchy at the curvature level.