Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type

The Cauchy problem for harmonic maps from Minkowski space with its standard flat metric to a certain non-constant curvature Lorentzian 2-metric is studied. The target manifold is distinguished by the fact that the Euler-Lagrange equation for the energy functional is Darboux integrable. The time evol...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Vassiliou, P.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149228
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type / P.J. Vassiliou // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149228
record_format dspace
spelling irk-123456789-1492282019-02-20T01:23:09Z Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type Vassiliou, P.J. The Cauchy problem for harmonic maps from Minkowski space with its standard flat metric to a certain non-constant curvature Lorentzian 2-metric is studied. The target manifold is distinguished by the fact that the Euler-Lagrange equation for the energy functional is Darboux integrable. The time evolution of the Cauchy data is reduced to an ordinary differential equation of Lie type associated to SL(2) acting on a manifold of dimension 4. This is further reduced to the simplest Lie system: the Riccati equation. Lie reduction permits explicit representation formulas for various initial value problems. Additionally, a concise (hyperbolic) Weierstrass-type representation formula is derived. Finally, a number of open problems are framed. 2013 Article Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type / P.J. Vassiliou // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A35; 53A55; 58A15; 58A20; 58A30 DOI: http://dx.doi.org/10.3842/SIGMA.2013.024 http://dspace.nbuv.gov.ua/handle/123456789/149228 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Cauchy problem for harmonic maps from Minkowski space with its standard flat metric to a certain non-constant curvature Lorentzian 2-metric is studied. The target manifold is distinguished by the fact that the Euler-Lagrange equation for the energy functional is Darboux integrable. The time evolution of the Cauchy data is reduced to an ordinary differential equation of Lie type associated to SL(2) acting on a manifold of dimension 4. This is further reduced to the simplest Lie system: the Riccati equation. Lie reduction permits explicit representation formulas for various initial value problems. Additionally, a concise (hyperbolic) Weierstrass-type representation formula is derived. Finally, a number of open problems are framed.
format Article
author Vassiliou, P.J.
spellingShingle Vassiliou, P.J.
Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Vassiliou, P.J.
author_sort Vassiliou, P.J.
title Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
title_short Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
title_full Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
title_fullStr Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
title_full_unstemmed Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
title_sort cauchy problem for a darboux integrable wave map system and equations of lie type
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149228
citation_txt Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type / P.J. Vassiliou // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT vassilioupj cauchyproblemforadarbouxintegrablewavemapsystemandequationsoflietype
first_indexed 2023-05-20T17:32:17Z
last_indexed 2023-05-20T17:32:17Z
_version_ 1796153515873140736