Solving Local Equivalence Problems with the Equivariant Moving Frame Method

Given a Lie pseudo-group action, an equivariant moving frame exists in the neighborhood of a submanifold jet provided the action is free and regular. For local equivalence problems the freeness requirement cannot always be satisfied and in this paper we show that, with the appropriate modifications...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Valiquette, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149233
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solving Local Equivalence Problems with the Equivariant Moving Frame Method / F. Valiquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149233
record_format dspace
spelling irk-123456789-1492332019-02-20T01:23:38Z Solving Local Equivalence Problems with the Equivariant Moving Frame Method Valiquette, F. Given a Lie pseudo-group action, an equivariant moving frame exists in the neighborhood of a submanifold jet provided the action is free and regular. For local equivalence problems the freeness requirement cannot always be satisfied and in this paper we show that, with the appropriate modifications and assumptions, the equivariant moving frame constructions extend to submanifold jets where the pseudo-group does not act freely at any order. Once this is done, we review the solution to the local equivalence problem of submanifolds within the equivariant moving frame framework. This offers an alternative approach to Cartan's equivalence method based on the theory of G-structures. 2013 Article Solving Local Equivalence Problems with the Equivariant Moving Frame Method / F. Valiquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 42 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A55; 58A15 DOI: http://dx.doi.org/10.3842/SIGMA.2013.029 http://dspace.nbuv.gov.ua/handle/123456789/149233 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Given a Lie pseudo-group action, an equivariant moving frame exists in the neighborhood of a submanifold jet provided the action is free and regular. For local equivalence problems the freeness requirement cannot always be satisfied and in this paper we show that, with the appropriate modifications and assumptions, the equivariant moving frame constructions extend to submanifold jets where the pseudo-group does not act freely at any order. Once this is done, we review the solution to the local equivalence problem of submanifolds within the equivariant moving frame framework. This offers an alternative approach to Cartan's equivalence method based on the theory of G-structures.
format Article
author Valiquette, F.
spellingShingle Valiquette, F.
Solving Local Equivalence Problems with the Equivariant Moving Frame Method
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Valiquette, F.
author_sort Valiquette, F.
title Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_short Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_full Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_fullStr Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_full_unstemmed Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_sort solving local equivalence problems with the equivariant moving frame method
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149233
citation_txt Solving Local Equivalence Problems with the Equivariant Moving Frame Method / F. Valiquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 42 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT valiquettef solvinglocalequivalenceproblemswiththeequivariantmovingframemethod
first_indexed 2023-05-20T17:32:18Z
last_indexed 2023-05-20T17:32:18Z
_version_ 1796153516401623040