The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis

We define the Pascal triangle of a discrete (gray scale) image as a pyramidal arrangement of complex-valued moments and we explore its geometric significance. In particular, we show that the entries of row k of this triangle correspond to the Fourier series coefficients of the moment of order k of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Boutin, M., Huang, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149235
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis / M. Boutin, S. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149235
record_format dspace
spelling irk-123456789-1492352019-02-20T01:24:05Z The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis Boutin, M. Huang, S. We define the Pascal triangle of a discrete (gray scale) image as a pyramidal arrangement of complex-valued moments and we explore its geometric significance. In particular, we show that the entries of row k of this triangle correspond to the Fourier series coefficients of the moment of order k of the Radon transform of the image. Group actions on the plane can be naturally prolonged onto the entries of the Pascal triangle. We study the prolongation of some common group actions, such as rotations and reflections, and we propose simple tests for detecting equivalences and self-equivalences under these group actions. The motivating application of this work is the problem of characterizing the geometry of objects on images, for example by detecting approximate symmetries. 2013 Article The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis / M. Boutin, S. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 8 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 30E05; 57S25; 68T10 DOI: http://dx.doi.org/10.3842/SIGMA.2013.031 http://dspace.nbuv.gov.ua/handle/123456789/149235 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We define the Pascal triangle of a discrete (gray scale) image as a pyramidal arrangement of complex-valued moments and we explore its geometric significance. In particular, we show that the entries of row k of this triangle correspond to the Fourier series coefficients of the moment of order k of the Radon transform of the image. Group actions on the plane can be naturally prolonged onto the entries of the Pascal triangle. We study the prolongation of some common group actions, such as rotations and reflections, and we propose simple tests for detecting equivalences and self-equivalences under these group actions. The motivating application of this work is the problem of characterizing the geometry of objects on images, for example by detecting approximate symmetries.
format Article
author Boutin, M.
Huang, S.
spellingShingle Boutin, M.
Huang, S.
The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Boutin, M.
Huang, S.
author_sort Boutin, M.
title The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis
title_short The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis
title_full The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis
title_fullStr The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis
title_full_unstemmed The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis
title_sort pascal triangle of a discrete image: definition, properties and application to shape analysis
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149235
citation_txt The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape Analysis / M. Boutin, S. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 8 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT boutinm thepascaltriangleofadiscreteimagedefinitionpropertiesandapplicationtoshapeanalysis
AT huangs thepascaltriangleofadiscreteimagedefinitionpropertiesandapplicationtoshapeanalysis
AT boutinm pascaltriangleofadiscreteimagedefinitionpropertiesandapplicationtoshapeanalysis
AT huangs pascaltriangleofadiscreteimagedefinitionpropertiesandapplicationtoshapeanalysis
first_indexed 2023-05-20T17:32:18Z
last_indexed 2023-05-20T17:32:18Z
_version_ 1796153516612386816