On Addition Formulae for Sigma Functions of Telescopic Curves
A telescopic curve is a certain algebraic curve defined by m−1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of t...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149237 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Addition Formulae for Sigma Functions of Telescopic Curves / T. Ayano, A. Nakayashiki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A telescopic curve is a certain algebraic curve defined by m−1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of the prime form in terms of the derivative of the sigma function is also given. |
---|