Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality

We study integrable deformations of sine-Liouville conformal field theory. Every integrable perturbation of this model is related to the series of quantum integrals of motion (hierarchy). We construct the factorized scattering matrices for different integrable perturbed conformal field theories. The...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Fateev, V.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149240
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality / V.A. Fateev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 44 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149240
record_format dspace
spelling irk-123456789-1492402019-02-20T01:23:56Z Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality Fateev, V.A. We study integrable deformations of sine-Liouville conformal field theory. Every integrable perturbation of this model is related to the series of quantum integrals of motion (hierarchy). We construct the factorized scattering matrices for different integrable perturbed conformal field theories. The perturbation theory, Bethe ansatz technique, renormalization group and methods of perturbed conformal field theory are applied to show that all integrable deformations of sine-Liouville model possess non-trivial duality properties. 2017 Article Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality / V.A. Fateev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 44 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16T25; 17B68; 83C47 DOI:10.3842/SIGMA.2017.080 http://dspace.nbuv.gov.ua/handle/123456789/149240 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study integrable deformations of sine-Liouville conformal field theory. Every integrable perturbation of this model is related to the series of quantum integrals of motion (hierarchy). We construct the factorized scattering matrices for different integrable perturbed conformal field theories. The perturbation theory, Bethe ansatz technique, renormalization group and methods of perturbed conformal field theory are applied to show that all integrable deformations of sine-Liouville model possess non-trivial duality properties.
format Article
author Fateev, V.A.
spellingShingle Fateev, V.A.
Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fateev, V.A.
author_sort Fateev, V.A.
title Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality
title_short Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality
title_full Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality
title_fullStr Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality
title_full_unstemmed Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality
title_sort integrable deformations of sine-liouville conformal field theory and duality
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/149240
citation_txt Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality / V.A. Fateev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 44 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fateevva integrabledeformationsofsineliouvilleconformalfieldtheoryandduality
first_indexed 2023-05-20T17:31:26Z
last_indexed 2023-05-20T17:31:26Z
_version_ 1796153493515403264