Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality
We study integrable deformations of sine-Liouville conformal field theory. Every integrable perturbation of this model is related to the series of quantum integrals of motion (hierarchy). We construct the factorized scattering matrices for different integrable perturbed conformal field theories. The...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149240 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality / V.A. Fateev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 44 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149240 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492402019-02-20T01:23:56Z Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality Fateev, V.A. We study integrable deformations of sine-Liouville conformal field theory. Every integrable perturbation of this model is related to the series of quantum integrals of motion (hierarchy). We construct the factorized scattering matrices for different integrable perturbed conformal field theories. The perturbation theory, Bethe ansatz technique, renormalization group and methods of perturbed conformal field theory are applied to show that all integrable deformations of sine-Liouville model possess non-trivial duality properties. 2017 Article Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality / V.A. Fateev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 44 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16T25; 17B68; 83C47 DOI:10.3842/SIGMA.2017.080 http://dspace.nbuv.gov.ua/handle/123456789/149240 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study integrable deformations of sine-Liouville conformal field theory. Every integrable perturbation of this model is related to the series of quantum integrals of motion (hierarchy). We construct the factorized scattering matrices for different integrable perturbed conformal field theories. The perturbation theory, Bethe ansatz technique, renormalization group and methods of perturbed conformal field theory are applied to show that all integrable deformations of sine-Liouville model possess non-trivial duality properties. |
format |
Article |
author |
Fateev, V.A. |
spellingShingle |
Fateev, V.A. Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fateev, V.A. |
author_sort |
Fateev, V.A. |
title |
Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality |
title_short |
Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality |
title_full |
Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality |
title_fullStr |
Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality |
title_full_unstemmed |
Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality |
title_sort |
integrable deformations of sine-liouville conformal field theory and duality |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149240 |
citation_txt |
Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality / V.A. Fateev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 44 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fateevva integrabledeformationsofsineliouvilleconformalfieldtheoryandduality |
first_indexed |
2023-05-20T17:31:26Z |
last_indexed |
2023-05-20T17:31:26Z |
_version_ |
1796153493515403264 |