Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians

In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing nu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Guseinov, G.Sh.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149241
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149241
record_format dspace
spelling irk-123456789-1492412019-02-20T01:28:03Z Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians Guseinov, G.Sh. In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing numbers of the matrix. The inverse problems from generalized spectral function as well as from spectral data are investigated. In this way, a procedure for construction of complex tridiagonal matrices having real eigenvalues is obtained. 2009 Article Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians / G.Sh. Guseinov// Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 23 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 15A29; 39A10 http://dspace.nbuv.gov.ua/handle/123456789/149241 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing numbers of the matrix. The inverse problems from generalized spectral function as well as from spectral data are investigated. In this way, a procedure for construction of complex tridiagonal matrices having real eigenvalues is obtained.
format Article
author Guseinov, G.Sh.
spellingShingle Guseinov, G.Sh.
Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Guseinov, G.Sh.
author_sort Guseinov, G.Sh.
title Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
title_short Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
title_full Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
title_fullStr Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
title_full_unstemmed Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
title_sort inverse spectral problems for tridiagonal n by n complex hamiltonians
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149241
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT guseinovgsh inversespectralproblemsfortridiagonalnbyncomplexhamiltonians
first_indexed 2023-05-20T17:32:32Z
last_indexed 2023-05-20T17:32:32Z
_version_ 1796153530455687168