On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems

The particular case of the integrable two component (2+1)-dimensional hydrodynamical type systems, which generalises the so-called Hamiltonian subcase, is considered. The associated system in involution is integrated in a parametric form. A dispersionless Lax formulation is found.

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Pavlov, M.V., Popowicz, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149242
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems / M.V. Pavlov, Z. Popowicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149242
record_format dspace
spelling irk-123456789-1492422019-02-20T01:28:05Z On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems Pavlov, M.V. Popowicz, Z. The particular case of the integrable two component (2+1)-dimensional hydrodynamical type systems, which generalises the so-called Hamiltonian subcase, is considered. The associated system in involution is integrated in a parametric form. A dispersionless Lax formulation is found. 2009 Article On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems / M.V. Pavlov, Z. Popowicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 35Q53 http://dspace.nbuv.gov.ua/handle/123456789/149242 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The particular case of the integrable two component (2+1)-dimensional hydrodynamical type systems, which generalises the so-called Hamiltonian subcase, is considered. The associated system in involution is integrated in a parametric form. A dispersionless Lax formulation is found.
format Article
author Pavlov, M.V.
Popowicz, Z.
spellingShingle Pavlov, M.V.
Popowicz, Z.
On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Pavlov, M.V.
Popowicz, Z.
author_sort Pavlov, M.V.
title On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
title_short On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
title_full On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
title_fullStr On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
title_full_unstemmed On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
title_sort on integrability of a special class of two-component (2+1)-dimensional hydrodynamic-type systems
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149242
citation_txt On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems / M.V. Pavlov, Z. Popowicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 7 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT pavlovmv onintegrabilityofaspecialclassoftwocomponent21dimensionalhydrodynamictypesystems
AT popowiczz onintegrabilityofaspecialclassoftwocomponent21dimensionalhydrodynamictypesystems
first_indexed 2023-05-20T17:32:32Z
last_indexed 2023-05-20T17:32:32Z
_version_ 1796153530560544768