On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
The particular case of the integrable two component (2+1)-dimensional hydrodynamical type systems, which generalises the so-called Hamiltonian subcase, is considered. The associated system in involution is integrated in a parametric form. A dispersionless Lax formulation is found.
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149242 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems / M.V. Pavlov, Z. Popowicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149242 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492422019-02-20T01:28:05Z On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems Pavlov, M.V. Popowicz, Z. The particular case of the integrable two component (2+1)-dimensional hydrodynamical type systems, which generalises the so-called Hamiltonian subcase, is considered. The associated system in involution is integrated in a parametric form. A dispersionless Lax formulation is found. 2009 Article On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems / M.V. Pavlov, Z. Popowicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 35Q53 http://dspace.nbuv.gov.ua/handle/123456789/149242 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The particular case of the integrable two component (2+1)-dimensional hydrodynamical type systems, which generalises the so-called Hamiltonian subcase, is considered. The associated system in involution is integrated in a parametric form. A dispersionless Lax formulation is found. |
format |
Article |
author |
Pavlov, M.V. Popowicz, Z. |
spellingShingle |
Pavlov, M.V. Popowicz, Z. On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Pavlov, M.V. Popowicz, Z. |
author_sort |
Pavlov, M.V. |
title |
On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems |
title_short |
On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems |
title_full |
On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems |
title_fullStr |
On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems |
title_full_unstemmed |
On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems |
title_sort |
on integrability of a special class of two-component (2+1)-dimensional hydrodynamic-type systems |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149242 |
citation_txt |
On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems / M.V. Pavlov, Z. Popowicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 7 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT pavlovmv onintegrabilityofaspecialclassoftwocomponent21dimensionalhydrodynamictypesystems AT popowiczz onintegrabilityofaspecialclassoftwocomponent21dimensionalhydrodynamictypesystems |
first_indexed |
2023-05-20T17:32:32Z |
last_indexed |
2023-05-20T17:32:32Z |
_version_ |
1796153530560544768 |