Comments on the Dynamics of the Pais-Uhlenbeck Oscillator

We discuss the quantum dynamics of the PU oscillator, i.e. the system with the Lagrangian L = ½ [ ¨q² - (Ω₁² + Ω₂²) ·q² + Ω₁²Ω₂²q ] (+ nonlinear terms). When Ω₁ ≠ Ω₂, the free PU oscillator has a pure point spectrum that is dense everywhere. When Ω₁ = Ω₂, the spectrum is continuous, E ∊ {–∞, ∞...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Smilga, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149243
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Comments on the Dynamics of the Pais-Uhlenbeck Oscillator / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149243
record_format dspace
spelling irk-123456789-1492432019-02-20T01:27:59Z Comments on the Dynamics of the Pais-Uhlenbeck Oscillator Smilga, A.V. We discuss the quantum dynamics of the PU oscillator, i.e. the system with the Lagrangian L = ½ [ ¨q² - (Ω₁² + Ω₂²) ·q² + Ω₁²Ω₂²q ] (+ nonlinear terms). When Ω₁ ≠ Ω₂, the free PU oscillator has a pure point spectrum that is dense everywhere. When Ω₁ = Ω₂, the spectrum is continuous, E ∊ {–∞, ∞}. The spectrum is not bounded from below, but that is not disastrous as the Hamiltonian is Hermitian and the evolution operator is unitary. Generically, the inclusion of interaction terms breaks unitarity, but in some special cases unitarity is preserved. We discuss also the nonstandard realization of the PU oscillator suggested by Bender and Mannheim, where the spectrum of the free Hamiltonian is positive definite, but wave functions grow exponentially for large real values of canonical coordinates. The free nonstandard PU oscillator is unitary at Ω₁ ≠ Ω₂, but unitarity is broken in the equal frequencies limit. 2009 Article Comments on the Dynamics of the Pais-Uhlenbeck Oscillator / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 70H50; 70H14 http://dspace.nbuv.gov.ua/handle/123456789/149243 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We discuss the quantum dynamics of the PU oscillator, i.e. the system with the Lagrangian L = ½ [ ¨q² - (Ω₁² + Ω₂²) ·q² + Ω₁²Ω₂²q ] (+ nonlinear terms). When Ω₁ ≠ Ω₂, the free PU oscillator has a pure point spectrum that is dense everywhere. When Ω₁ = Ω₂, the spectrum is continuous, E ∊ {–∞, ∞}. The spectrum is not bounded from below, but that is not disastrous as the Hamiltonian is Hermitian and the evolution operator is unitary. Generically, the inclusion of interaction terms breaks unitarity, but in some special cases unitarity is preserved. We discuss also the nonstandard realization of the PU oscillator suggested by Bender and Mannheim, where the spectrum of the free Hamiltonian is positive definite, but wave functions grow exponentially for large real values of canonical coordinates. The free nonstandard PU oscillator is unitary at Ω₁ ≠ Ω₂, but unitarity is broken in the equal frequencies limit.
format Article
author Smilga, A.V.
spellingShingle Smilga, A.V.
Comments on the Dynamics of the Pais-Uhlenbeck Oscillator
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Smilga, A.V.
author_sort Smilga, A.V.
title Comments on the Dynamics of the Pais-Uhlenbeck Oscillator
title_short Comments on the Dynamics of the Pais-Uhlenbeck Oscillator
title_full Comments on the Dynamics of the Pais-Uhlenbeck Oscillator
title_fullStr Comments on the Dynamics of the Pais-Uhlenbeck Oscillator
title_full_unstemmed Comments on the Dynamics of the Pais-Uhlenbeck Oscillator
title_sort comments on the dynamics of the pais-uhlenbeck oscillator
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149243
citation_txt Comments on the Dynamics of the Pais-Uhlenbeck Oscillator / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT smilgaav commentsonthedynamicsofthepaisuhlenbeckoscillator
first_indexed 2023-05-20T17:32:32Z
last_indexed 2023-05-20T17:32:32Z
_version_ 1796153530665402368