2025-02-23T06:09:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149247%22&qt=morelikethis&rows=5
2025-02-23T06:09:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149247%22&qt=morelikethis&rows=5
2025-02-23T06:09:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:09:40-05:00 DEBUG: Deserialized SOLR response

The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials

We construct special solutions to the rational quantum Knizhnik-Zamolodchikov equation associated with the Lie algebra glN. The main ingredient is a special class of the shifted non-symmetric Jack polynomials. It may be regarded as a shifted version of the singular polynomials studied by Dunkl. We p...

Full description

Saved in:
Bibliographic Details
Main Authors: Kakei, S., Nishizawa, M., Saito, Y., Takeyama, Y.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149247
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-149247
record_format dspace
spelling irk-123456789-1492472019-02-20T01:27:52Z The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials Kakei, S. Nishizawa, M. Saito, Y. Takeyama, Y. We construct special solutions to the rational quantum Knizhnik-Zamolodchikov equation associated with the Lie algebra glN. The main ingredient is a special class of the shifted non-symmetric Jack polynomials. It may be regarded as a shifted version of the singular polynomials studied by Dunkl. We prove that our solutions contain those obtained as a scaling limit of matrix elements of the vertex operators of level one. 2009 Article The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials / S. Kakei, M. Nishizawa, Y. Saito, Y. Takeyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 39A13; 33C52; 81R50 http://dspace.nbuv.gov.ua/handle/123456789/149247 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We construct special solutions to the rational quantum Knizhnik-Zamolodchikov equation associated with the Lie algebra glN. The main ingredient is a special class of the shifted non-symmetric Jack polynomials. It may be regarded as a shifted version of the singular polynomials studied by Dunkl. We prove that our solutions contain those obtained as a scaling limit of matrix elements of the vertex operators of level one.
format Article
author Kakei, S.
Nishizawa, M.
Saito, Y.
Takeyama, Y.
spellingShingle Kakei, S.
Nishizawa, M.
Saito, Y.
Takeyama, Y.
The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kakei, S.
Nishizawa, M.
Saito, Y.
Takeyama, Y.
author_sort Kakei, S.
title The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
title_short The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
title_full The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
title_fullStr The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
title_full_unstemmed The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
title_sort rational qkz equation and shifted non-symmetric jack polynomials
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149247
citation_txt The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials / S. Kakei, M. Nishizawa, Y. Saito, Y. Takeyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kakeis therationalqkzequationandshiftednonsymmetricjackpolynomials
AT nishizawam therationalqkzequationandshiftednonsymmetricjackpolynomials
AT saitoy therationalqkzequationandshiftednonsymmetricjackpolynomials
AT takeyamay therationalqkzequationandshiftednonsymmetricjackpolynomials
AT kakeis rationalqkzequationandshiftednonsymmetricjackpolynomials
AT nishizawam rationalqkzequationandshiftednonsymmetricjackpolynomials
AT saitoy rationalqkzequationandshiftednonsymmetricjackpolynomials
AT takeyamay rationalqkzequationandshiftednonsymmetricjackpolynomials
first_indexed 2023-05-20T17:32:33Z
last_indexed 2023-05-20T17:32:33Z
_version_ 1796153531084832768