The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
We construct special solutions to the rational quantum Knizhnik-Zamolodchikov equation associated with the Lie algebra glN. The main ingredient is a special class of the shifted non-symmetric Jack polynomials. It may be regarded as a shifted version of the singular polynomials studied by Dunkl. We p...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149247 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials / S. Kakei, M. Nishizawa, Y. Saito, Y. Takeyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149247 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492472019-02-20T01:27:52Z The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials Kakei, S. Nishizawa, M. Saito, Y. Takeyama, Y. We construct special solutions to the rational quantum Knizhnik-Zamolodchikov equation associated with the Lie algebra glN. The main ingredient is a special class of the shifted non-symmetric Jack polynomials. It may be regarded as a shifted version of the singular polynomials studied by Dunkl. We prove that our solutions contain those obtained as a scaling limit of matrix elements of the vertex operators of level one. 2009 Article The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials / S. Kakei, M. Nishizawa, Y. Saito, Y. Takeyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 39A13; 33C52; 81R50 http://dspace.nbuv.gov.ua/handle/123456789/149247 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We construct special solutions to the rational quantum Knizhnik-Zamolodchikov equation associated with the Lie algebra glN. The main ingredient is a special class of the shifted non-symmetric Jack polynomials. It may be regarded as a shifted version of the singular polynomials studied by Dunkl. We prove that our solutions contain those obtained as a scaling limit of matrix elements of the vertex operators of level one. |
format |
Article |
author |
Kakei, S. Nishizawa, M. Saito, Y. Takeyama, Y. |
spellingShingle |
Kakei, S. Nishizawa, M. Saito, Y. Takeyama, Y. The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kakei, S. Nishizawa, M. Saito, Y. Takeyama, Y. |
author_sort |
Kakei, S. |
title |
The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials |
title_short |
The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials |
title_full |
The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials |
title_fullStr |
The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials |
title_full_unstemmed |
The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials |
title_sort |
rational qkz equation and shifted non-symmetric jack polynomials |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149247 |
citation_txt |
The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials / S. Kakei, M. Nishizawa, Y. Saito, Y. Takeyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kakeis therationalqkzequationandshiftednonsymmetricjackpolynomials AT nishizawam therationalqkzequationandshiftednonsymmetricjackpolynomials AT saitoy therationalqkzequationandshiftednonsymmetricjackpolynomials AT takeyamay therationalqkzequationandshiftednonsymmetricjackpolynomials AT kakeis rationalqkzequationandshiftednonsymmetricjackpolynomials AT nishizawam rationalqkzequationandshiftednonsymmetricjackpolynomials AT saitoy rationalqkzequationandshiftednonsymmetricjackpolynomials AT takeyamay rationalqkzequationandshiftednonsymmetricjackpolynomials |
first_indexed |
2023-05-20T17:32:33Z |
last_indexed |
2023-05-20T17:32:33Z |
_version_ |
1796153531084832768 |