Derivations of the Moyal Algebra and Noncommutative Gauge Theories

The differential calculus based on the derivations of an associative algebra underlies most of the noncommutative field theories considered so far. We review the essential properties of this framework and the main features of noncommutative connections in the case of non graded associative unital al...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Wallet, Jean-Christophe
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149248
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Derivations of the Moyal Algebra and Noncommutative Gauge Theories / Jean-Christophe Wallet // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 52 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149248
record_format dspace
spelling irk-123456789-1492482019-02-20T01:26:53Z Derivations of the Moyal Algebra and Noncommutative Gauge Theories Wallet, Jean-Christophe The differential calculus based on the derivations of an associative algebra underlies most of the noncommutative field theories considered so far. We review the essential properties of this framework and the main features of noncommutative connections in the case of non graded associative unital algebras with involution. We extend this framework to the case of Z₂-graded unital involutive algebras. We show, in the case of the Moyal algebra or some related Z₂-graded version of it, that the derivation based differential calculus is a suitable framework to construct Yang-Mills-Higgs type models on Moyal (or related) algebras, the covariant coordinates having in particular a natural interpretation as Higgs fields. We also exhibit, in one situation, a link between the renormalisable NC φ4-model with harmonic term and a gauge theory model. Some possible consequences of this are briefly discussed. 2009 Article Derivations of the Moyal Algebra and Noncommutative Gauge Theories / Jean-Christophe Wallet // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 52 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T75; 81T13 http://dspace.nbuv.gov.ua/handle/123456789/149248 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The differential calculus based on the derivations of an associative algebra underlies most of the noncommutative field theories considered so far. We review the essential properties of this framework and the main features of noncommutative connections in the case of non graded associative unital algebras with involution. We extend this framework to the case of Z₂-graded unital involutive algebras. We show, in the case of the Moyal algebra or some related Z₂-graded version of it, that the derivation based differential calculus is a suitable framework to construct Yang-Mills-Higgs type models on Moyal (or related) algebras, the covariant coordinates having in particular a natural interpretation as Higgs fields. We also exhibit, in one situation, a link between the renormalisable NC φ4-model with harmonic term and a gauge theory model. Some possible consequences of this are briefly discussed.
format Article
author Wallet, Jean-Christophe
spellingShingle Wallet, Jean-Christophe
Derivations of the Moyal Algebra and Noncommutative Gauge Theories
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Wallet, Jean-Christophe
author_sort Wallet, Jean-Christophe
title Derivations of the Moyal Algebra and Noncommutative Gauge Theories
title_short Derivations of the Moyal Algebra and Noncommutative Gauge Theories
title_full Derivations of the Moyal Algebra and Noncommutative Gauge Theories
title_fullStr Derivations of the Moyal Algebra and Noncommutative Gauge Theories
title_full_unstemmed Derivations of the Moyal Algebra and Noncommutative Gauge Theories
title_sort derivations of the moyal algebra and noncommutative gauge theories
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149248
citation_txt Derivations of the Moyal Algebra and Noncommutative Gauge Theories / Jean-Christophe Wallet // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 52 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT walletjeanchristophe derivationsofthemoyalalgebraandnoncommutativegaugetheories
first_indexed 2023-05-20T17:32:33Z
last_indexed 2023-05-20T17:32:33Z
_version_ 1796153531189690368