2025-02-22T16:22:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149249%22&qt=morelikethis&rows=5
2025-02-22T16:22:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149249%22&qt=morelikethis&rows=5
2025-02-22T16:22:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T16:22:13-05:00 DEBUG: Deserialized SOLR response

Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type

We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is y...

Full description

Saved in:
Bibliographic Details
Main Authors: Khongsap, T., Wang, W.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149249
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.