Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is y...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149249 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type / T. Khongsap, W. Wang // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149249 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492492019-02-20T01:26:54Z Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type Khongsap, T. Wang, W. We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras. 2009 Article Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type / T. Khongsap, W. Wang // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 20C08 http://dspace.nbuv.gov.ua/handle/123456789/149249 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras. |
format |
Article |
author |
Khongsap, T. Wang, W. |
spellingShingle |
Khongsap, T. Wang, W. Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Khongsap, T. Wang, W. |
author_sort |
Khongsap, T. |
title |
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type |
title_short |
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type |
title_full |
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type |
title_fullStr |
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type |
title_full_unstemmed |
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type |
title_sort |
hecke-clifford algebras and spin hecke algebras iv: odd double affine type |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149249 |
citation_txt |
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type / T. Khongsap, W. Wang // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 17 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT khongsapt heckecliffordalgebrasandspinheckealgebrasivodddoubleaffinetype AT wangw heckecliffordalgebrasandspinheckealgebrasivodddoubleaffinetype |
first_indexed |
2023-05-20T17:32:33Z |
last_indexed |
2023-05-20T17:32:33Z |
_version_ |
1796153531295596544 |