2025-02-23T12:12:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149260%22&qt=morelikethis&rows=5
2025-02-23T12:12:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149260%22&qt=morelikethis&rows=5
2025-02-23T12:12:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T12:12:00-05:00 DEBUG: Deserialized SOLR response
Quiver Varieties and Branching
Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on R...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2009
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149260 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-149260 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492602019-02-20T01:26:37Z Quiver Varieties and Branching Nakajima, H. Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on R4/Zr correspond to weight spaces of representations of the Langlands dual group GaffÚ at level r. When G = SL(l), the Uhlenbeck compactification is the quiver variety of type sl(r)aff, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for G = SL(l). 2009 Article Quiver Varieties and Branching / H. Nakajima // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B65; 14D21 http://dspace.nbuv.gov.ua/handle/123456789/149260 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on R4/Zr correspond to weight spaces of representations of the Langlands dual group GaffÚ at level r. When G = SL(l), the Uhlenbeck compactification is the quiver variety of type sl(r)aff, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for G = SL(l). |
format |
Article |
author |
Nakajima, H. |
spellingShingle |
Nakajima, H. Quiver Varieties and Branching Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Nakajima, H. |
author_sort |
Nakajima, H. |
title |
Quiver Varieties and Branching |
title_short |
Quiver Varieties and Branching |
title_full |
Quiver Varieties and Branching |
title_fullStr |
Quiver Varieties and Branching |
title_full_unstemmed |
Quiver Varieties and Branching |
title_sort |
quiver varieties and branching |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149260 |
citation_txt |
Quiver Varieties and Branching / H. Nakajima // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT nakajimah quivervarietiesandbranching |
first_indexed |
2023-05-20T17:32:35Z |
last_indexed |
2023-05-20T17:32:35Z |
_version_ |
1796153532350464000 |