Positive Definite Functions on Complex Spheres and their Walks through Dimensions
We provide walks through dimensions for isotropic positive definite functions defined over complex spheres. We show that the analogues of Montée and Descente operators as proposed by Beatson and zu Castell [J. Approx. Theory 221 (2017), 22-37] on the basis of the original Matheron operator [Les vari...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149263 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Positive Definite Functions on Complex Spheres and their Walks through Dimensions / E. Massa, A.P. Peron, E. Porcu // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 49 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We provide walks through dimensions for isotropic positive definite functions defined over complex spheres. We show that the analogues of Montée and Descente operators as proposed by Beatson and zu Castell [J. Approx. Theory 221 (2017), 22-37] on the basis of the original Matheron operator [Les variables régionalisées et leur estimation, Masson, Paris, 1965], allow for similar walks through dimensions. We show that the Montée operators also preserve, up to a constant, strict positive definiteness. For the Descente operators, we show that strict positive definiteness is preserved under some additional conditions, but we provide counterexamples showing that this is not true in general. We also provide a list of parametric families of (strictly) positive definite functions over complex spheres, which are important for several applications. |
---|