The Inverse Spectral Problem for Jacobi-Type Pencils
In this paper we study the inverse spectral problem for Jacobi-type pencils. By a Jacobi-type pencil we mean the following pencil J₅−λJ₃, where J₃ is a Jacobi matrix and J₅ is a semi-infinite real symmetric five-diagonal matrix with positive numbers on the second subdiagonal. In the case of a specia...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149264 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Inverse Spectral Problem for Jacobi-Type Pencils / S.M. Zagorodnyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper we study the inverse spectral problem for Jacobi-type pencils. By a Jacobi-type pencil we mean the following pencil J₅−λJ₃, where J₃ is a Jacobi matrix and J₅ is a semi-infinite real symmetric five-diagonal matrix with positive numbers on the second subdiagonal. In the case of a special perturbation of orthogonal polynomials on a finite interval the corresponding spectral function takes an explicit form. |
---|