The Inverse Spectral Problem for Jacobi-Type Pencils

In this paper we study the inverse spectral problem for Jacobi-type pencils. By a Jacobi-type pencil we mean the following pencil J₅−λJ₃, where J₃ is a Jacobi matrix and J₅ is a semi-infinite real symmetric five-diagonal matrix with positive numbers on the second subdiagonal. In the case of a specia...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Zagorodnyuk, S.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149264
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Inverse Spectral Problem for Jacobi-Type Pencils / S.M. Zagorodnyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149264
record_format dspace
spelling irk-123456789-1492642019-02-20T01:23:39Z The Inverse Spectral Problem for Jacobi-Type Pencils Zagorodnyuk, S.M. In this paper we study the inverse spectral problem for Jacobi-type pencils. By a Jacobi-type pencil we mean the following pencil J₅−λJ₃, where J₃ is a Jacobi matrix and J₅ is a semi-infinite real symmetric five-diagonal matrix with positive numbers on the second subdiagonal. In the case of a special perturbation of orthogonal polynomials on a finite interval the corresponding spectral function takes an explicit form. 2017 Article The Inverse Spectral Problem for Jacobi-Type Pencils / S.M. Zagorodnyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 47B36 DOI:10.3842/SIGMA.2017.085 http://dspace.nbuv.gov.ua/handle/123456789/149264 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we study the inverse spectral problem for Jacobi-type pencils. By a Jacobi-type pencil we mean the following pencil J₅−λJ₃, where J₃ is a Jacobi matrix and J₅ is a semi-infinite real symmetric five-diagonal matrix with positive numbers on the second subdiagonal. In the case of a special perturbation of orthogonal polynomials on a finite interval the corresponding spectral function takes an explicit form.
format Article
author Zagorodnyuk, S.M.
spellingShingle Zagorodnyuk, S.M.
The Inverse Spectral Problem for Jacobi-Type Pencils
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Zagorodnyuk, S.M.
author_sort Zagorodnyuk, S.M.
title The Inverse Spectral Problem for Jacobi-Type Pencils
title_short The Inverse Spectral Problem for Jacobi-Type Pencils
title_full The Inverse Spectral Problem for Jacobi-Type Pencils
title_fullStr The Inverse Spectral Problem for Jacobi-Type Pencils
title_full_unstemmed The Inverse Spectral Problem for Jacobi-Type Pencils
title_sort inverse spectral problem for jacobi-type pencils
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/149264
citation_txt The Inverse Spectral Problem for Jacobi-Type Pencils / S.M. Zagorodnyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT zagorodnyuksm theinversespectralproblemforjacobitypepencils
AT zagorodnyuksm inversespectralproblemforjacobitypepencils
first_indexed 2023-05-20T17:31:27Z
last_indexed 2023-05-20T17:31:27Z
_version_ 1796153493831024640