On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids
In the following paper we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter which may be considered generalizations of the Hilbert's fifth problem to this context. Most notably we present a '...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149265 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids / P. Raźny // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149265 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492652019-02-20T01:23:39Z On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids Raźny, P. In the following paper we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter which may be considered generalizations of the Hilbert's fifth problem to this context. Most notably we present a ''solution'' to the problem for proper transitive groupoids and transitive groupoids with compact source fibers. 2017 Article On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids / P. Raźny // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 12 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22A22 DOI:10.3842/SIGMA.2017.098 http://dspace.nbuv.gov.ua/handle/123456789/149265 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In the following paper we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter which may be considered generalizations of the Hilbert's fifth problem to this context. Most notably we present a ''solution'' to the problem for proper transitive groupoids and transitive groupoids with compact source fibers. |
format |
Article |
author |
Raźny, P. |
spellingShingle |
Raźny, P. On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Raźny, P. |
author_sort |
Raźny, P. |
title |
On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids |
title_short |
On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids |
title_full |
On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids |
title_fullStr |
On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids |
title_full_unstemmed |
On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids |
title_sort |
on the generalization of hilbert's fifth problem to transitive groupoids |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149265 |
citation_txt |
On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids / P. Raźny // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 12 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT raznyp onthegeneralizationofhilbertsfifthproblemtotransitivegroupoids |
first_indexed |
2023-05-20T17:31:43Z |
last_indexed |
2023-05-20T17:31:43Z |
_version_ |
1796153493935882240 |