James' Submodule Theorem and the Steinberg Module

James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Geck, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149266
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor.