James' Submodule Theorem and the Steinberg Module

James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Geck, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149266
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149266
record_format dspace
spelling irk-123456789-1492662019-02-20T01:23:40Z James' Submodule Theorem and the Steinberg Module Geck, M. James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor. 2017 Article James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20C33; 20C20 DOI:10.3842/SIGMA.2017.091 http://dspace.nbuv.gov.ua/handle/123456789/149266 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor.
format Article
author Geck, M.
spellingShingle Geck, M.
James' Submodule Theorem and the Steinberg Module
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Geck, M.
author_sort Geck, M.
title James' Submodule Theorem and the Steinberg Module
title_short James' Submodule Theorem and the Steinberg Module
title_full James' Submodule Theorem and the Steinberg Module
title_fullStr James' Submodule Theorem and the Steinberg Module
title_full_unstemmed James' Submodule Theorem and the Steinberg Module
title_sort james' submodule theorem and the steinberg module
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/149266
citation_txt James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT geckm jamessubmoduletheoremandthesteinbergmodule
first_indexed 2023-05-20T17:31:43Z
last_indexed 2023-05-20T17:31:43Z
_version_ 1796153494041788416