James' Submodule Theorem and the Steinberg Module
James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor o...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149266 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149266 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492662019-02-20T01:23:40Z James' Submodule Theorem and the Steinberg Module Geck, M. James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor. 2017 Article James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20C33; 20C20 DOI:10.3842/SIGMA.2017.091 http://dspace.nbuv.gov.ua/handle/123456789/149266 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor. |
format |
Article |
author |
Geck, M. |
spellingShingle |
Geck, M. James' Submodule Theorem and the Steinberg Module Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Geck, M. |
author_sort |
Geck, M. |
title |
James' Submodule Theorem and the Steinberg Module |
title_short |
James' Submodule Theorem and the Steinberg Module |
title_full |
James' Submodule Theorem and the Steinberg Module |
title_fullStr |
James' Submodule Theorem and the Steinberg Module |
title_full_unstemmed |
James' Submodule Theorem and the Steinberg Module |
title_sort |
james' submodule theorem and the steinberg module |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149266 |
citation_txt |
James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT geckm jamessubmoduletheoremandthesteinbergmodule |
first_indexed |
2023-05-20T17:31:43Z |
last_indexed |
2023-05-20T17:31:43Z |
_version_ |
1796153494041788416 |