Orbital Linearization of Smooth Completely Integrable Vector Fields
The main purpose of this paper is to prove the smooth local orbital linearization theorem for smooth vector fields which admit a complete set of first integrals near a nondegenerate singular point. The main tools used in the proof of this theorem are the formal orbital linearization theorem for form...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149271 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Orbital Linearization of Smooth Completely Integrable Vector Fields / N.T. Zung // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149271 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492712019-02-20T01:24:46Z Orbital Linearization of Smooth Completely Integrable Vector Fields Zung, N.T. The main purpose of this paper is to prove the smooth local orbital linearization theorem for smooth vector fields which admit a complete set of first integrals near a nondegenerate singular point. The main tools used in the proof of this theorem are the formal orbital linearization theorem for formal integrable vector fields, the blowing-up method, and the Sternberg-Chen isomorphism theorem for formally-equivalent smooth hyperbolic vector fields. 2017 Article Orbital Linearization of Smooth Completely Integrable Vector Fields / N.T. Zung // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37G05; 58K50; 37J35 DOI:10.3842/SIGMA.2017.093 http://dspace.nbuv.gov.ua/handle/123456789/149271 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The main purpose of this paper is to prove the smooth local orbital linearization theorem for smooth vector fields which admit a complete set of first integrals near a nondegenerate singular point. The main tools used in the proof of this theorem are the formal orbital linearization theorem for formal integrable vector fields, the blowing-up method, and the Sternberg-Chen isomorphism theorem for formally-equivalent smooth hyperbolic vector fields. |
format |
Article |
author |
Zung, N.T. |
spellingShingle |
Zung, N.T. Orbital Linearization of Smooth Completely Integrable Vector Fields Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Zung, N.T. |
author_sort |
Zung, N.T. |
title |
Orbital Linearization of Smooth Completely Integrable Vector Fields |
title_short |
Orbital Linearization of Smooth Completely Integrable Vector Fields |
title_full |
Orbital Linearization of Smooth Completely Integrable Vector Fields |
title_fullStr |
Orbital Linearization of Smooth Completely Integrable Vector Fields |
title_full_unstemmed |
Orbital Linearization of Smooth Completely Integrable Vector Fields |
title_sort |
orbital linearization of smooth completely integrable vector fields |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149271 |
citation_txt |
Orbital Linearization of Smooth Completely Integrable Vector Fields / N.T. Zung // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT zungnt orbitallinearizationofsmoothcompletelyintegrablevectorfields |
first_indexed |
2023-05-20T17:31:44Z |
last_indexed |
2023-05-20T17:31:44Z |
_version_ |
1796153494569222144 |