A Projective-to-Conformal Fefferman-Type Construction

We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like co...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Hammerl, M., Sagerschnig, K., Šilhan, J., Taghavi-Chabert, A., Zádník, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149272
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149272
record_format dspace
spelling irk-123456789-1492722019-02-20T01:23:44Z A Projective-to-Conformal Fefferman-Type Construction Hammerl, M. Sagerschnig, K. Šilhan, J. Taghavi-Chabert, A. Zádník, V. We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry. 2017 Article A Projective-to-Conformal Fefferman-Type Construction / M. Hammerl, K. Sagerschnig, J. Šilhan, A. Taghavi-Chabert, V. Zádník// Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 30 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A20; 53A30; 53B30; 53C07 DOI:10.3842/SIGMA.2017.081 http://dspace.nbuv.gov.ua/handle/123456789/149272 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry.
format Article
author Hammerl, M.
Sagerschnig, K.
Šilhan, J.
Taghavi-Chabert, A.
Zádník, V.
spellingShingle Hammerl, M.
Sagerschnig, K.
Šilhan, J.
Taghavi-Chabert, A.
Zádník, V.
A Projective-to-Conformal Fefferman-Type Construction
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Hammerl, M.
Sagerschnig, K.
Šilhan, J.
Taghavi-Chabert, A.
Zádník, V.
author_sort Hammerl, M.
title A Projective-to-Conformal Fefferman-Type Construction
title_short A Projective-to-Conformal Fefferman-Type Construction
title_full A Projective-to-Conformal Fefferman-Type Construction
title_fullStr A Projective-to-Conformal Fefferman-Type Construction
title_full_unstemmed A Projective-to-Conformal Fefferman-Type Construction
title_sort projective-to-conformal fefferman-type construction
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/149272
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT hammerlm aprojectivetoconformalfeffermantypeconstruction
AT sagerschnigk aprojectivetoconformalfeffermantypeconstruction
AT silhanj aprojectivetoconformalfeffermantypeconstruction
AT taghavichaberta aprojectivetoconformalfeffermantypeconstruction
AT zadnikv aprojectivetoconformalfeffermantypeconstruction
AT hammerlm projectivetoconformalfeffermantypeconstruction
AT sagerschnigk projectivetoconformalfeffermantypeconstruction
AT silhanj projectivetoconformalfeffermantypeconstruction
AT taghavichaberta projectivetoconformalfeffermantypeconstruction
AT zadnikv projectivetoconformalfeffermantypeconstruction
first_indexed 2023-05-20T17:31:27Z
last_indexed 2023-05-20T17:31:27Z
_version_ 1796153494674079744