A Projective-to-Conformal Fefferman-Type Construction
We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like co...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149272 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149272 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492722019-02-20T01:23:44Z A Projective-to-Conformal Fefferman-Type Construction Hammerl, M. Sagerschnig, K. Šilhan, J. Taghavi-Chabert, A. Zádník, V. We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry. 2017 Article A Projective-to-Conformal Fefferman-Type Construction / M. Hammerl, K. Sagerschnig, J. Šilhan, A. Taghavi-Chabert, V. Zádník// Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 30 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A20; 53A30; 53B30; 53C07 DOI:10.3842/SIGMA.2017.081 http://dspace.nbuv.gov.ua/handle/123456789/149272 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study a Fefferman-type construction based on the inclusion of Lie groups SL(n+1) into Spin(n+1,n+1). The construction associates a split-signature (n,n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry. |
format |
Article |
author |
Hammerl, M. Sagerschnig, K. Šilhan, J. Taghavi-Chabert, A. Zádník, V. |
spellingShingle |
Hammerl, M. Sagerschnig, K. Šilhan, J. Taghavi-Chabert, A. Zádník, V. A Projective-to-Conformal Fefferman-Type Construction Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Hammerl, M. Sagerschnig, K. Šilhan, J. Taghavi-Chabert, A. Zádník, V. |
author_sort |
Hammerl, M. |
title |
A Projective-to-Conformal Fefferman-Type Construction |
title_short |
A Projective-to-Conformal Fefferman-Type Construction |
title_full |
A Projective-to-Conformal Fefferman-Type Construction |
title_fullStr |
A Projective-to-Conformal Fefferman-Type Construction |
title_full_unstemmed |
A Projective-to-Conformal Fefferman-Type Construction |
title_sort |
projective-to-conformal fefferman-type construction |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149272 |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT hammerlm aprojectivetoconformalfeffermantypeconstruction AT sagerschnigk aprojectivetoconformalfeffermantypeconstruction AT silhanj aprojectivetoconformalfeffermantypeconstruction AT taghavichaberta aprojectivetoconformalfeffermantypeconstruction AT zadnikv aprojectivetoconformalfeffermantypeconstruction AT hammerlm projectivetoconformalfeffermantypeconstruction AT sagerschnigk projectivetoconformalfeffermantypeconstruction AT silhanj projectivetoconformalfeffermantypeconstruction AT taghavichaberta projectivetoconformalfeffermantypeconstruction AT zadnikv projectivetoconformalfeffermantypeconstruction |
first_indexed |
2023-05-20T17:31:27Z |
last_indexed |
2023-05-20T17:31:27Z |
_version_ |
1796153494674079744 |