Differential Calculus on h-Deformed Spaces
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149274 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149274 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492742019-02-20T01:23:41Z Differential Calculus on h-Deformed Spaces Herlemont, B. Ogievetsky, O. We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings Diffh,σ(n). 2017 Article Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16S30; 16S32; 16T25; 13B30; 17B10; 39A14 DOI:10.3842/SIGMA.2017.082 http://dspace.nbuv.gov.ua/handle/123456789/149274 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings Diffh,σ(n). |
format |
Article |
author |
Herlemont, B. Ogievetsky, O. |
spellingShingle |
Herlemont, B. Ogievetsky, O. Differential Calculus on h-Deformed Spaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Herlemont, B. Ogievetsky, O. |
author_sort |
Herlemont, B. |
title |
Differential Calculus on h-Deformed Spaces |
title_short |
Differential Calculus on h-Deformed Spaces |
title_full |
Differential Calculus on h-Deformed Spaces |
title_fullStr |
Differential Calculus on h-Deformed Spaces |
title_full_unstemmed |
Differential Calculus on h-Deformed Spaces |
title_sort |
differential calculus on h-deformed spaces |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149274 |
citation_txt |
Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT herlemontb differentialcalculusonhdeformedspaces AT ogievetskyo differentialcalculusonhdeformedspaces |
first_indexed |
2023-05-20T17:31:27Z |
last_indexed |
2023-05-20T17:31:27Z |
_version_ |
1796153494885892096 |