Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces
Let Xλ and X′λ be monomial deformations of two Delsarte hypersurfaces in weighted projective spaces. In this paper we give a sufficient condition so that their zeta functions have a common factor. This generalises results by Doran, Kelly, Salerno, Sperber, Voight and Whitcher [arXiv:1612.09249], whe...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149275 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces / R. Kloosterman // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149275 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492752019-02-20T01:23:59Z Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces Kloosterman, R. Let Xλ and X′λ be monomial deformations of two Delsarte hypersurfaces in weighted projective spaces. In this paper we give a sufficient condition so that their zeta functions have a common factor. This generalises results by Doran, Kelly, Salerno, Sperber, Voight and Whitcher [arXiv:1612.09249], where they showed this for a particular monomial deformation of a Calabi-Yau invertible polynomial. It turns out that our factor can be of higher degree than the factor found in [arXiv:1612.09249]. 2017 Article Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces / R. Kloosterman // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14G10; 11G25; 14C22; 14J28; 14J70; 14Q10 DOI:10.3842/SIGMA.2017.087 http://dspace.nbuv.gov.ua/handle/123456789/149275 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let Xλ and X′λ be monomial deformations of two Delsarte hypersurfaces in weighted projective spaces. In this paper we give a sufficient condition so that their zeta functions have a common factor. This generalises results by Doran, Kelly, Salerno, Sperber, Voight and Whitcher [arXiv:1612.09249], where they showed this for a particular monomial deformation of a Calabi-Yau invertible polynomial. It turns out that our factor can be of higher degree than the factor found in [arXiv:1612.09249]. |
format |
Article |
author |
Kloosterman, R. |
spellingShingle |
Kloosterman, R. Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kloosterman, R. |
author_sort |
Kloosterman, R. |
title |
Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces |
title_short |
Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces |
title_full |
Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces |
title_fullStr |
Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces |
title_full_unstemmed |
Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces |
title_sort |
zeta functions of monomial deformations of delsarte hypersurfaces |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149275 |
citation_txt |
Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces / R. Kloosterman // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kloostermanr zetafunctionsofmonomialdeformationsofdelsartehypersurfaces |
first_indexed |
2023-05-20T17:31:44Z |
last_indexed |
2023-05-20T17:31:44Z |
_version_ |
1796153494991798272 |