The Chazy XII Equation and Schwarz Triangle Functions

Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348] showed that the Chazy XII equation y′′′−2yy′′+3y′²=K(6y′−y²)², K∈C, is equivalent to a projective-invariant equation for an affine connection on a one-dimensional complex manifold with projective structure. By exploiting t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Bihun, O., Chakravarty, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149278
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Chazy XII Equation and Schwarz Triangle Functions / O. Bihun, S. Chakravarty // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149278
record_format dspace
spelling irk-123456789-1492782019-02-20T01:24:14Z The Chazy XII Equation and Schwarz Triangle Functions Bihun, O. Chakravarty, S. Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348] showed that the Chazy XII equation y′′′−2yy′′+3y′²=K(6y′−y²)², K∈C, is equivalent to a projective-invariant equation for an affine connection on a one-dimensional complex manifold with projective structure. By exploiting this geometric connection it is shown that the Chazy XII solution, for certain values of K, can be expressed as y=a₁w₁+a₂w₂+a₃w₃ where wi solve the generalized Darboux-Halphen system. This relationship holds only for certain values of the coefficients (a1,a2,a3) and the Darboux-Halphen parameters (α,β,γ), which are enumerated in Table 2. Consequently, the Chazy XII solution y(z) is parametrized by a particular class of Schwarz triangle functions S(α,β,γ;z) which are used to represent the solutions wi of the Darboux-Halphen system. The paper only considers the case where α+β+γ<1. The associated triangle functions are related among themselves via rational maps that are derived from the classical algebraic transformations of hypergeometric functions. The Chazy XII equation is also shown to be equivalent to a Ramanujan-type differential system for a triple (P^,Q^,R^). 2017 Article The Chazy XII Equation and Schwarz Triangle Functions / O. Bihun, S. Chakravarty // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M45; 34M55; 33C05 DOI:10.3842/SIGMA.2017.095 http://dspace.nbuv.gov.ua/handle/123456789/149278 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348] showed that the Chazy XII equation y′′′−2yy′′+3y′²=K(6y′−y²)², K∈C, is equivalent to a projective-invariant equation for an affine connection on a one-dimensional complex manifold with projective structure. By exploiting this geometric connection it is shown that the Chazy XII solution, for certain values of K, can be expressed as y=a₁w₁+a₂w₂+a₃w₃ where wi solve the generalized Darboux-Halphen system. This relationship holds only for certain values of the coefficients (a1,a2,a3) and the Darboux-Halphen parameters (α,β,γ), which are enumerated in Table 2. Consequently, the Chazy XII solution y(z) is parametrized by a particular class of Schwarz triangle functions S(α,β,γ;z) which are used to represent the solutions wi of the Darboux-Halphen system. The paper only considers the case where α+β+γ<1. The associated triangle functions are related among themselves via rational maps that are derived from the classical algebraic transformations of hypergeometric functions. The Chazy XII equation is also shown to be equivalent to a Ramanujan-type differential system for a triple (P^,Q^,R^).
format Article
author Bihun, O.
Chakravarty, S.
spellingShingle Bihun, O.
Chakravarty, S.
The Chazy XII Equation and Schwarz Triangle Functions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bihun, O.
Chakravarty, S.
author_sort Bihun, O.
title The Chazy XII Equation and Schwarz Triangle Functions
title_short The Chazy XII Equation and Schwarz Triangle Functions
title_full The Chazy XII Equation and Schwarz Triangle Functions
title_fullStr The Chazy XII Equation and Schwarz Triangle Functions
title_full_unstemmed The Chazy XII Equation and Schwarz Triangle Functions
title_sort chazy xii equation and schwarz triangle functions
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/149278
citation_txt The Chazy XII Equation and Schwarz Triangle Functions / O. Bihun, S. Chakravarty // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bihuno thechazyxiiequationandschwarztrianglefunctions
AT chakravartys thechazyxiiequationandschwarztrianglefunctions
AT bihuno chazyxiiequationandschwarztrianglefunctions
AT chakravartys chazyxiiequationandschwarztrianglefunctions
first_indexed 2023-05-20T17:31:44Z
last_indexed 2023-05-20T17:31:44Z
_version_ 1796153495308468224