Three-Hilbert-Space Formulation of Quantum Mechanics

In paper [Znojil M., Phys. Rev. D 78 (2008), 085003, 5 pages, arXiv:0809.2874] the two-Hilbert-space (2HS, a.k.a. cryptohermitian) formulation of Quantum Mechanics has been revisited. In the present continuation of this study (with the spaces in question denoted as H(auxiliary) and H(standard)) we s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Znojil, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149281
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Three-Hilbert-Space Formulation of Quantum Mechanics / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149281
record_format dspace
spelling irk-123456789-1492812019-02-20T01:27:23Z Three-Hilbert-Space Formulation of Quantum Mechanics Znojil, M. In paper [Znojil M., Phys. Rev. D 78 (2008), 085003, 5 pages, arXiv:0809.2874] the two-Hilbert-space (2HS, a.k.a. cryptohermitian) formulation of Quantum Mechanics has been revisited. In the present continuation of this study (with the spaces in question denoted as H(auxiliary) and H(standard)) we spot a weak point of the 2HS formalism which lies in the double role played by H(auxiliary). As long as this confluence of roles may (and did!) lead to confusion in the literature, we propose an amended, three-Hilbert-space (3HS) reformulation of the same theory. As a byproduct of our analysis of the formalism we offer an amendment of the Dirac's bra-ket notation and we also show how its use clarifies the concept of covariance in time-dependent cases. Via an elementary example we finally explain why in certain quantum systems the generator H(gen) of the time-evolution of the wave functions may differ from their Hamiltonian H. 2009 Article Three-Hilbert-Space Formulation of Quantum Mechanics / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 25 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81Q10; 47B50 http://dspace.nbuv.gov.ua/handle/123456789/149281 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In paper [Znojil M., Phys. Rev. D 78 (2008), 085003, 5 pages, arXiv:0809.2874] the two-Hilbert-space (2HS, a.k.a. cryptohermitian) formulation of Quantum Mechanics has been revisited. In the present continuation of this study (with the spaces in question denoted as H(auxiliary) and H(standard)) we spot a weak point of the 2HS formalism which lies in the double role played by H(auxiliary). As long as this confluence of roles may (and did!) lead to confusion in the literature, we propose an amended, three-Hilbert-space (3HS) reformulation of the same theory. As a byproduct of our analysis of the formalism we offer an amendment of the Dirac's bra-ket notation and we also show how its use clarifies the concept of covariance in time-dependent cases. Via an elementary example we finally explain why in certain quantum systems the generator H(gen) of the time-evolution of the wave functions may differ from their Hamiltonian H.
format Article
author Znojil, M.
spellingShingle Znojil, M.
Three-Hilbert-Space Formulation of Quantum Mechanics
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Znojil, M.
author_sort Znojil, M.
title Three-Hilbert-Space Formulation of Quantum Mechanics
title_short Three-Hilbert-Space Formulation of Quantum Mechanics
title_full Three-Hilbert-Space Formulation of Quantum Mechanics
title_fullStr Three-Hilbert-Space Formulation of Quantum Mechanics
title_full_unstemmed Three-Hilbert-Space Formulation of Quantum Mechanics
title_sort three-hilbert-space formulation of quantum mechanics
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149281
citation_txt Three-Hilbert-Space Formulation of Quantum Mechanics / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 25 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT znojilm threehilbertspaceformulationofquantummechanics
first_indexed 2023-05-20T17:32:35Z
last_indexed 2023-05-20T17:32:35Z
_version_ 1796153532665036800