A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions

For a finite-dimensional simple Lie algebra g, let U⁺q(g) be the positive part of the quantized universal enveloping algebra, and Aq(g) be the quantized algebra of functions. We show that the transition matrix of the PBW bases of U⁺q(g) coincides with the intertwiner between the irreducible Aq(g)-mo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Kuniba, A., Okado, M., Yamada, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149342
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Function / A. Kuniba, M. Okado, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149342
record_format dspace
spelling irk-123456789-1493422019-02-22T01:24:08Z A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions Kuniba, A. Okado, M. Yamada, Y. For a finite-dimensional simple Lie algebra g, let U⁺q(g) be the positive part of the quantized universal enveloping algebra, and Aq(g) be the quantized algebra of functions. We show that the transition matrix of the PBW bases of U⁺q(g) coincides with the intertwiner between the irreducible Aq(g)-modules labeled by two different reduced expressions of the longest element of the Weyl group of g. This generalizes the earlier result by Sergeev on A₂ related to the tetrahedron equation and endows a new representation theoretical interpretation with the recent solution to the 3D reflection equation for C₂. Our proof is based on a realization of U⁺q(g) in a quotient ring of Aq(g). 2013 Article A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Function / A. Kuniba, M. Okado, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 20G42; 81R50; 17B80 DOI: http://dx.doi.org/10.3842/SIGMA.2013.049 http://dspace.nbuv.gov.ua/handle/123456789/149342 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a finite-dimensional simple Lie algebra g, let U⁺q(g) be the positive part of the quantized universal enveloping algebra, and Aq(g) be the quantized algebra of functions. We show that the transition matrix of the PBW bases of U⁺q(g) coincides with the intertwiner between the irreducible Aq(g)-modules labeled by two different reduced expressions of the longest element of the Weyl group of g. This generalizes the earlier result by Sergeev on A₂ related to the tetrahedron equation and endows a new representation theoretical interpretation with the recent solution to the 3D reflection equation for C₂. Our proof is based on a realization of U⁺q(g) in a quotient ring of Aq(g).
format Article
author Kuniba, A.
Okado, M.
Yamada, Y.
spellingShingle Kuniba, A.
Okado, M.
Yamada, Y.
A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kuniba, A.
Okado, M.
Yamada, Y.
author_sort Kuniba, A.
title A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions
title_short A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions
title_full A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions
title_fullStr A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions
title_full_unstemmed A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions
title_sort common structure in pbw bases of the nilpotent subalgebra of uq(g) and quantized algebra of functions
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149342
citation_txt A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Function / A. Kuniba, M. Okado, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kunibaa acommonstructureinpbwbasesofthenilpotentsubalgebraofuqgandquantizedalgebraoffunctions
AT okadom acommonstructureinpbwbasesofthenilpotentsubalgebraofuqgandquantizedalgebraoffunctions
AT yamaday acommonstructureinpbwbasesofthenilpotentsubalgebraofuqgandquantizedalgebraoffunctions
AT kunibaa commonstructureinpbwbasesofthenilpotentsubalgebraofuqgandquantizedalgebraoffunctions
AT okadom commonstructureinpbwbasesofthenilpotentsubalgebraofuqgandquantizedalgebraoffunctions
AT yamaday commonstructureinpbwbasesofthenilpotentsubalgebraofuqgandquantizedalgebraoffunctions
first_indexed 2023-05-20T17:32:45Z
last_indexed 2023-05-20T17:32:45Z
_version_ 1796153534904795136