A Connection Formula for the q-Confluent Hypergeometric Function
We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the conn...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149343 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149343 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1493432019-02-22T01:24:10Z A Connection Formula for the q-Confluent Hypergeometric Function Morita, T. We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula. 2013 Article A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D15; 34M40; 39A13 DOI: http://dx.doi.org/10.3842/SIGMA.2013.050 http://dspace.nbuv.gov.ua/handle/123456789/149343 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula. |
format |
Article |
author |
Morita, T. |
spellingShingle |
Morita, T. A Connection Formula for the q-Confluent Hypergeometric Function Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Morita, T. |
author_sort |
Morita, T. |
title |
A Connection Formula for the q-Confluent Hypergeometric Function |
title_short |
A Connection Formula for the q-Confluent Hypergeometric Function |
title_full |
A Connection Formula for the q-Confluent Hypergeometric Function |
title_fullStr |
A Connection Formula for the q-Confluent Hypergeometric Function |
title_full_unstemmed |
A Connection Formula for the q-Confluent Hypergeometric Function |
title_sort |
connection formula for the q-confluent hypergeometric function |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149343 |
citation_txt |
A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT moritat aconnectionformulafortheqconfluenthypergeometricfunction AT moritat connectionformulafortheqconfluenthypergeometricfunction |
first_indexed |
2023-05-20T17:32:46Z |
last_indexed |
2023-05-20T17:32:46Z |
_version_ |
1796153535010701312 |