A Connection Formula for the q-Confluent Hypergeometric Function

We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the conn...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Morita, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149343
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149343
record_format dspace
spelling irk-123456789-1493432019-02-22T01:24:10Z A Connection Formula for the q-Confluent Hypergeometric Function Morita, T. We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula. 2013 Article A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D15; 34M40; 39A13 DOI: http://dx.doi.org/10.3842/SIGMA.2013.050 http://dspace.nbuv.gov.ua/handle/123456789/149343 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula.
format Article
author Morita, T.
spellingShingle Morita, T.
A Connection Formula for the q-Confluent Hypergeometric Function
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Morita, T.
author_sort Morita, T.
title A Connection Formula for the q-Confluent Hypergeometric Function
title_short A Connection Formula for the q-Confluent Hypergeometric Function
title_full A Connection Formula for the q-Confluent Hypergeometric Function
title_fullStr A Connection Formula for the q-Confluent Hypergeometric Function
title_full_unstemmed A Connection Formula for the q-Confluent Hypergeometric Function
title_sort connection formula for the q-confluent hypergeometric function
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149343
citation_txt A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT moritat aconnectionformulafortheqconfluenthypergeometricfunction
AT moritat connectionformulafortheqconfluenthypergeometricfunction
first_indexed 2023-05-20T17:32:46Z
last_indexed 2023-05-20T17:32:46Z
_version_ 1796153535010701312