Twisted Cyclic Cohomology and Modular Fredholm Modules

Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We pr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Rennie, A., Sitarz, A., Yamashita, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149344
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Twisted Cyclic Cohomology and Modular Fredholm Modules / A. Rennie, A. Sitarz, M. Yamashita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149344
record_format dspace
spelling irk-123456789-1493442019-02-22T01:24:14Z Twisted Cyclic Cohomology and Modular Fredholm Modules Rennie, A. Sitarz, A. Yamashita, M. Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SUq(2). 2013 Article Twisted Cyclic Cohomology and Modular Fredholm Modules / A. Rennie, A. Sitarz, M. Yamashita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58J42; 58B32; 46L87 DOI: http://dx.doi.org/10.3842/SIGMA.2013.051 http://dspace.nbuv.gov.ua/handle/123456789/149344 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SUq(2).
format Article
author Rennie, A.
Sitarz, A.
Yamashita, M.
spellingShingle Rennie, A.
Sitarz, A.
Yamashita, M.
Twisted Cyclic Cohomology and Modular Fredholm Modules
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Rennie, A.
Sitarz, A.
Yamashita, M.
author_sort Rennie, A.
title Twisted Cyclic Cohomology and Modular Fredholm Modules
title_short Twisted Cyclic Cohomology and Modular Fredholm Modules
title_full Twisted Cyclic Cohomology and Modular Fredholm Modules
title_fullStr Twisted Cyclic Cohomology and Modular Fredholm Modules
title_full_unstemmed Twisted Cyclic Cohomology and Modular Fredholm Modules
title_sort twisted cyclic cohomology and modular fredholm modules
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149344
citation_txt Twisted Cyclic Cohomology and Modular Fredholm Modules / A. Rennie, A. Sitarz, M. Yamashita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT renniea twistedcycliccohomologyandmodularfredholmmodules
AT sitarza twistedcycliccohomologyandmodularfredholmmodules
AT yamashitam twistedcycliccohomologyandmodularfredholmmodules
first_indexed 2023-05-20T17:32:46Z
last_indexed 2023-05-20T17:32:46Z
_version_ 1796153535114510336