Invariant Discretization Schemes Using Evolution-Projection Techniques

Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Bihlo, A., Nave, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149346
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Invariant Discretization Schemes Using Evolution-Projection Techniques / A. Bihlo, J. Nave // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149346
record_format dspace
spelling irk-123456789-1493462019-02-23T01:23:27Z Invariant Discretization Schemes Using Evolution-Projection Techniques Bihlo, A. Nave, J. Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical properties of invariant discretization schemes using the proposed evolution-projection strategy. 2013 Article Invariant Discretization Schemes Using Evolution-Projection Techniques / A. Bihlo, J. Nave // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 65M06; 58J70; 35K05 DOI: http://dx.doi.org/10.3842/SIGMA.2013.052 http://dspace.nbuv.gov.ua/handle/123456789/149346 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical properties of invariant discretization schemes using the proposed evolution-projection strategy.
format Article
author Bihlo, A.
Nave, J.
spellingShingle Bihlo, A.
Nave, J.
Invariant Discretization Schemes Using Evolution-Projection Techniques
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bihlo, A.
Nave, J.
author_sort Bihlo, A.
title Invariant Discretization Schemes Using Evolution-Projection Techniques
title_short Invariant Discretization Schemes Using Evolution-Projection Techniques
title_full Invariant Discretization Schemes Using Evolution-Projection Techniques
title_fullStr Invariant Discretization Schemes Using Evolution-Projection Techniques
title_full_unstemmed Invariant Discretization Schemes Using Evolution-Projection Techniques
title_sort invariant discretization schemes using evolution-projection techniques
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149346
citation_txt Invariant Discretization Schemes Using Evolution-Projection Techniques / A. Bihlo, J. Nave // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 35 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bihloa invariantdiscretizationschemesusingevolutionprojectiontechniques
AT navej invariantdiscretizationschemesusingevolutionprojectiontechniques
first_indexed 2023-05-20T17:32:46Z
last_indexed 2023-05-20T17:32:46Z
_version_ 1796153535325274112