Extended T-System of Type G₂
We prove a family of 3-term relations in the Grothendieck ring of the category of finite-dimensional modules over the affine quantum algebra of type G₂ extending the celebrated T-system relations of type G₂. We show that these relations can be used to compute classes of certain irreducible modules,...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149348 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Extended T-System of Type G₂ / J. Li, E. Mukhin // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We prove a family of 3-term relations in the Grothendieck ring of the category of finite-dimensional modules over the affine quantum algebra of type G₂ extending the celebrated T-system relations of type G₂. We show that these relations can be used to compute classes of certain irreducible modules, including classes of all minimal affinizations of type G₂. We use this result to obtain explicit formulas for dimensions of all participating modules. |
---|