Extended T-System of Type G₂
We prove a family of 3-term relations in the Grothendieck ring of the category of finite-dimensional modules over the affine quantum algebra of type G₂ extending the celebrated T-system relations of type G₂. We show that these relations can be used to compute classes of certain irreducible modules,...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149348 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Extended T-System of Type G₂ / J. Li, E. Mukhin // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149348 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1493482019-02-22T01:24:16Z Extended T-System of Type G₂ Li, J. Mukhin, E. We prove a family of 3-term relations in the Grothendieck ring of the category of finite-dimensional modules over the affine quantum algebra of type G₂ extending the celebrated T-system relations of type G₂. We show that these relations can be used to compute classes of certain irreducible modules, including classes of all minimal affinizations of type G₂. We use this result to obtain explicit formulas for dimensions of all participating modules. 2013 Article Extended T-System of Type G₂ / J. Li, E. Mukhin // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R50; 82B23 DOI: http://dx.doi.org/10.3842/SIGMA.2013.054 http://dspace.nbuv.gov.ua/handle/123456789/149348 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove a family of 3-term relations in the Grothendieck ring of the category of finite-dimensional modules over the affine quantum algebra of type G₂ extending the celebrated T-system relations of type G₂. We show that these relations can be used to compute classes of certain irreducible modules, including classes of all minimal affinizations of type G₂. We use this result to obtain explicit formulas for dimensions of all participating modules. |
format |
Article |
author |
Li, J. Mukhin, E. |
spellingShingle |
Li, J. Mukhin, E. Extended T-System of Type G₂ Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Li, J. Mukhin, E. |
author_sort |
Li, J. |
title |
Extended T-System of Type G₂ |
title_short |
Extended T-System of Type G₂ |
title_full |
Extended T-System of Type G₂ |
title_fullStr |
Extended T-System of Type G₂ |
title_full_unstemmed |
Extended T-System of Type G₂ |
title_sort |
extended t-system of type g₂ |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149348 |
citation_txt |
Extended T-System of Type G₂ / J. Li, E. Mukhin // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT lij extendedtsystemoftypeg2 AT mukhine extendedtsystemoftypeg2 |
first_indexed |
2023-05-20T17:32:46Z |
last_indexed |
2023-05-20T17:32:46Z |
_version_ |
1796153535536037888 |