Solvable Many-Body Models of Goldfish Type with One-, Two- and Three-Body Forces

The class of solvable many-body problems ''of goldfish type'' is extended by including (the additional presence of) three-body forces. The solvable N-body problems thereby identified are characterized by Newtonian equations of motion featuring 19 arbitrary ''coupling co...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Bihun, O., Calogero, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149349
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solvable Many-Body Models of Goldfish Type with One-, Two- and Three-Body Forces / O. Bihun, F. Calogero // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The class of solvable many-body problems ''of goldfish type'' is extended by including (the additional presence of) three-body forces. The solvable N-body problems thereby identified are characterized by Newtonian equations of motion featuring 19 arbitrary ''coupling constants''. Restrictions on these constants are identified which cause these systems – or appropriate variants of them – to be isochronous or asymptotically isochronous, i.e. all their solutions to be periodic with a fixed period (independent of the initial data) or to have this property up to contributions vanishing exponentially as t→ ∞.