spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²

We consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in te...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Інститут математики НАН України
Дата:2013
Автори: Mellouli, N., Nibirantiza, A., Radoux, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149350
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Цитувати:spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149350
record_format dspace
spelling irk-123456789-1493502019-02-22T01:24:16Z spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² Mellouli, N. Nibirantiza, A. Radoux, F. We consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space Dλμ and the associated graded space of symbols Sδ (δ=μ−λ) can be considered as spo(2|2)-modules, where spo(2|2) is the Lie superalgebra of contact projective vector fields on S¹|². We show in this paper that there is a unique isomorphism of spo(2|2)-modules between Sδ and Dλμ that preserves the principal symbol (i.e. an spo(2|2)-equivariant quantization) for some values of δ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the spo(2|2)-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311-331] to prove the existence of a pgl(p+1|q)-equivariant quantization on Rp|q. 2013 Article spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D10; 17B66; 17B10 DOI: http://dx.doi.org/10.3842/SIGMA.2013.055 http://dspace.nbuv.gov.ua/handle/123456789/149350 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space Dλμ and the associated graded space of symbols Sδ (δ=μ−λ) can be considered as spo(2|2)-modules, where spo(2|2) is the Lie superalgebra of contact projective vector fields on S¹|². We show in this paper that there is a unique isomorphism of spo(2|2)-modules between Sδ and Dλμ that preserves the principal symbol (i.e. an spo(2|2)-equivariant quantization) for some values of δ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the spo(2|2)-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311-331] to prove the existence of a pgl(p+1|q)-equivariant quantization on Rp|q.
format Article
author Mellouli, N.
Nibirantiza, A.
Radoux, F.
spellingShingle Mellouli, N.
Nibirantiza, A.
Radoux, F.
spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Mellouli, N.
Nibirantiza, A.
Radoux, F.
author_sort Mellouli, N.
title spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_short spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_full spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_fullStr spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_full_unstemmed spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_sort spo(2|2)-equivariant quantizations on the supercircle s¹|²
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149350
citation_txt spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT melloulin spo22equivariantquantizationsonthesupercircles12
AT nibirantizaa spo22equivariantquantizationsonthesupercircles12
AT radouxf spo22equivariantquantizationsonthesupercircles12
first_indexed 2023-05-20T17:32:47Z
last_indexed 2023-05-20T17:32:47Z
_version_ 1796153535746801664