Integrability of Discrete Equations Modulo a Prime

We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Kanki, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149351
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149351
record_format dspace
spelling irk-123456789-1493512019-02-22T01:24:10Z Integrability of Discrete Equations Modulo a Prime Kanki, M. We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR. 2013 Article Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37K10; 34M55; 37P25 DOI: http://dx.doi.org/10.3842/SIGMA.2013.056 http://dspace.nbuv.gov.ua/handle/123456789/149351 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR.
format Article
author Kanki, M.
spellingShingle Kanki, M.
Integrability of Discrete Equations Modulo a Prime
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kanki, M.
author_sort Kanki, M.
title Integrability of Discrete Equations Modulo a Prime
title_short Integrability of Discrete Equations Modulo a Prime
title_full Integrability of Discrete Equations Modulo a Prime
title_fullStr Integrability of Discrete Equations Modulo a Prime
title_full_unstemmed Integrability of Discrete Equations Modulo a Prime
title_sort integrability of discrete equations modulo a prime
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149351
citation_txt Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kankim integrabilityofdiscreteequationsmoduloaprime
first_indexed 2023-05-20T17:32:47Z
last_indexed 2023-05-20T17:32:47Z
_version_ 1796153535852707840