Integrability of Discrete Equations Modulo a Prime
We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149351 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149351 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1493512019-02-22T01:24:10Z Integrability of Discrete Equations Modulo a Prime Kanki, M. We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR. 2013 Article Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37K10; 34M55; 37P25 DOI: http://dx.doi.org/10.3842/SIGMA.2013.056 http://dspace.nbuv.gov.ua/handle/123456789/149351 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR. |
format |
Article |
author |
Kanki, M. |
spellingShingle |
Kanki, M. Integrability of Discrete Equations Modulo a Prime Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kanki, M. |
author_sort |
Kanki, M. |
title |
Integrability of Discrete Equations Modulo a Prime |
title_short |
Integrability of Discrete Equations Modulo a Prime |
title_full |
Integrability of Discrete Equations Modulo a Prime |
title_fullStr |
Integrability of Discrete Equations Modulo a Prime |
title_full_unstemmed |
Integrability of Discrete Equations Modulo a Prime |
title_sort |
integrability of discrete equations modulo a prime |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149351 |
citation_txt |
Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kankim integrabilityofdiscreteequationsmoduloaprime |
first_indexed |
2023-05-20T17:32:47Z |
last_indexed |
2023-05-20T17:32:47Z |
_version_ |
1796153535852707840 |