Generalized Fuzzy Torus and its Modular Properties

We consider a generalization of the basic fuzzy torus to a fuzzy torus with non-trivial modular parameter, based on a finite matrix algebra. We discuss the modular properties of this fuzzy torus, and compute the matrix Laplacian for a scalar field. In the semi-classical limit, the generalized fuzzy...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Schreivogl, P., Steinacker, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149352
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized Fuzzy Torus and its Modular Properties / P. Schreivogl, H. Steinacker // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149352
record_format dspace
spelling irk-123456789-1493522019-02-22T01:22:54Z Generalized Fuzzy Torus and its Modular Properties Schreivogl, P. Steinacker, H. We consider a generalization of the basic fuzzy torus to a fuzzy torus with non-trivial modular parameter, based on a finite matrix algebra. We discuss the modular properties of this fuzzy torus, and compute the matrix Laplacian for a scalar field. In the semi-classical limit, the generalized fuzzy torus can be used to approximate a generic commutative torus represented by two generic vectors in the complex plane, with generic modular parameter τ. The effective classical geometry and the spectrum of the Laplacian are correctly reproduced in the limit. The spectrum of a matrix Dirac operator is also computed. 2013 Article Generalized Fuzzy Torus and its Modular Properties / P. Schreivogl, H. Steinacker // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R60; 81T75; 81T30 DOI: http://dx.doi.org/10.3842/SIGMA.2013.060 http://dspace.nbuv.gov.ua/handle/123456789/149352 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider a generalization of the basic fuzzy torus to a fuzzy torus with non-trivial modular parameter, based on a finite matrix algebra. We discuss the modular properties of this fuzzy torus, and compute the matrix Laplacian for a scalar field. In the semi-classical limit, the generalized fuzzy torus can be used to approximate a generic commutative torus represented by two generic vectors in the complex plane, with generic modular parameter τ. The effective classical geometry and the spectrum of the Laplacian are correctly reproduced in the limit. The spectrum of a matrix Dirac operator is also computed.
format Article
author Schreivogl, P.
Steinacker, H.
spellingShingle Schreivogl, P.
Steinacker, H.
Generalized Fuzzy Torus and its Modular Properties
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Schreivogl, P.
Steinacker, H.
author_sort Schreivogl, P.
title Generalized Fuzzy Torus and its Modular Properties
title_short Generalized Fuzzy Torus and its Modular Properties
title_full Generalized Fuzzy Torus and its Modular Properties
title_fullStr Generalized Fuzzy Torus and its Modular Properties
title_full_unstemmed Generalized Fuzzy Torus and its Modular Properties
title_sort generalized fuzzy torus and its modular properties
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149352
citation_txt Generalized Fuzzy Torus and its Modular Properties / P. Schreivogl, H. Steinacker // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT schreivoglp generalizedfuzzytorusanditsmodularproperties
AT steinackerh generalizedfuzzytorusanditsmodularproperties
first_indexed 2023-05-20T17:32:47Z
last_indexed 2023-05-20T17:32:47Z
_version_ 1796153535957565440