Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System
In this paper, we introduce a new differential-difference operator Tξ (ξ∈RN) by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between Tξ and the directional derivative ∂...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149356 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System / F. Bouzeffour // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149356 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1493562019-02-22T01:23:07Z Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System Bouzeffour, F. In this paper, we introduce a new differential-difference operator Tξ (ξ∈RN) by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between Tξ and the directional derivative ∂ξ. In the case of one variable, we prove that the Kummer functions are eigenfunctions of this operator. 2013 Article Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System / F. Bouzeffour // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C15; 33D52; 35A22 DOI: http://dx.doi.org/10.3842/SIGMA.2013.064 http://dspace.nbuv.gov.ua/handle/123456789/149356 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper, we introduce a new differential-difference operator Tξ (ξ∈RN) by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between Tξ and the directional derivative ∂ξ. In the case of one variable, we prove that the Kummer functions are eigenfunctions of this operator. |
format |
Article |
author |
Bouzeffour, F. |
spellingShingle |
Bouzeffour, F. Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Bouzeffour, F. |
author_sort |
Bouzeffour, F. |
title |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
title_short |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
title_full |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
title_fullStr |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
title_full_unstemmed |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
title_sort |
dunkl-type operators with projection terms associated to orthogonal subsystems in root system |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149356 |
citation_txt |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System / F. Bouzeffour // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT bouzeffourf dunkltypeoperatorswithprojectiontermsassociatedtoorthogonalsubsystemsinrootsystem |
first_indexed |
2023-05-20T17:32:48Z |
last_indexed |
2023-05-20T17:32:48Z |
_version_ |
1796153536380141568 |