Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation

We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Lisok, A.L., Shapovalov, A.V., Trifonov, A.Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149358
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation / A.L. Lisok, A.V. Shapovalov, A.Y. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149358
record_format dspace
spelling irk-123456789-1493582019-02-22T01:23:11Z Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation Lisok, A.L. Shapovalov, A.V. Trifonov, A.Y. We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained. 2013 Article Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation / A.L. Lisok, A.V. Shapovalov, A.Y. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 34 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q55; 45K05; 76M60; 81Q20 DOI: http://dx.doi.org/10.3842/SIGMA.2013.066 http://dspace.nbuv.gov.ua/handle/123456789/149358 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained.
format Article
author Lisok, A.L.
Shapovalov, A.V.
Trifonov, A.Y.
spellingShingle Lisok, A.L.
Shapovalov, A.V.
Trifonov, A.Y.
Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Lisok, A.L.
Shapovalov, A.V.
Trifonov, A.Y.
author_sort Lisok, A.L.
title Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_short Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_full Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_fullStr Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_full_unstemmed Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_sort symmetry and intertwining operators for the nonlocal gross-pitaevskii equation
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149358
citation_txt Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation / A.L. Lisok, A.V. Shapovalov, A.Y. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 34 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT lisokal symmetryandintertwiningoperatorsforthenonlocalgrosspitaevskiiequation
AT shapovalovav symmetryandintertwiningoperatorsforthenonlocalgrosspitaevskiiequation
AT trifonovay symmetryandintertwiningoperatorsforthenonlocalgrosspitaevskiiequation
first_indexed 2023-05-20T17:32:48Z
last_indexed 2023-05-20T17:32:48Z
_version_ 1796153536589856768