Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz

We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particula...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Belliard, S., Crampé, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149364
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz / S. Belliard, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149364
record_format dspace
spelling irk-123456789-1493642019-02-22T01:23:24Z Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz Belliard, S. Crampé, N. We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries. 2013 Article Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz / S. Belliard, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 39 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 82B23; 81R12 DOI: http://dx.doi.org/10.3842/SIGMA.2013.072 http://dspace.nbuv.gov.ua/handle/123456789/149364 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries.
format Article
author Belliard, S.
Crampé, N.
spellingShingle Belliard, S.
Crampé, N.
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Belliard, S.
Crampé, N.
author_sort Belliard, S.
title Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_short Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_full Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_fullStr Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_full_unstemmed Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_sort heisenberg xxx model with general boundaries: eigenvectors from algebraic bethe ansatz
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149364
citation_txt Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz / S. Belliard, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 39 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT belliards heisenbergxxxmodelwithgeneralboundarieseigenvectorsfromalgebraicbetheansatz
AT crampen heisenbergxxxmodelwithgeneralboundarieseigenvectorsfromalgebraicbetheansatz
first_indexed 2023-05-20T17:32:49Z
last_indexed 2023-05-20T17:32:49Z
_version_ 1796153537226342400