Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian
We introduce a Hamiltonian for two interacting su(2) spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight). Complementary insights are provided thro...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149368 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian / E. Mattei, J. Links // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149368 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1493682019-02-22T01:23:34Z Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian Mattei, E. Links, J. We introduce a Hamiltonian for two interacting su(2) spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight). Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable p+ip pairing Hamiltonian. 2013 Article Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian / E. Mattei, J. Links // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R05; 17B80; 81R12 DOI: http://dx.doi.org/10.3842/SIGMA.2013.076 http://dspace.nbuv.gov.ua/handle/123456789/149368 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce a Hamiltonian for two interacting su(2) spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight). Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable p+ip pairing Hamiltonian. |
format |
Article |
author |
Mattei, E. Links, J. |
spellingShingle |
Mattei, E. Links, J. Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Mattei, E. Links, J. |
author_sort |
Mattei, E. |
title |
Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian |
title_short |
Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian |
title_full |
Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian |
title_fullStr |
Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian |
title_full_unstemmed |
Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian |
title_sort |
ground-state analysis for an exactly solvable coupled-spin hamiltonian |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149368 |
citation_txt |
Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian / E. Mattei, J. Links // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT matteie groundstateanalysisforanexactlysolvablecoupledspinhamiltonian AT linksj groundstateanalysisforanexactlysolvablecoupledspinhamiltonian |
first_indexed |
2023-05-20T17:32:50Z |
last_indexed |
2023-05-20T17:32:50Z |
_version_ |
1796153537649967104 |