Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials

We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently st...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: van Diejen, J.F., Emsiz, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149369
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149369
record_format dspace
spelling irk-123456789-1493692019-02-22T01:23:32Z Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials van Diejen, J.F. Emsiz, E. We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently studied in detail by Venkateswaran. 2013 Article Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D52; 81T25; 81R50; 82B23 DOI: http://dx.doi.org/10.3842/SIGMA.2013.077 http://dspace.nbuv.gov.ua/handle/123456789/149369 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently studied in detail by Venkateswaran.
format Article
author van Diejen, J.F.
Emsiz, E.
spellingShingle van Diejen, J.F.
Emsiz, E.
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet van Diejen, J.F.
Emsiz, E.
author_sort van Diejen, J.F.
title Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_short Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_full Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_fullStr Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_full_unstemmed Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_sort boundary interactions for the semi-infinite q-boson system and hyperoctahedral hall-littlewood polynomials
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149369
citation_txt Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT vandiejenjf boundaryinteractionsforthesemiinfiniteqbosonsystemandhyperoctahedralhalllittlewoodpolynomials
AT emsize boundaryinteractionsforthesemiinfiniteqbosonsystemandhyperoctahedralhalllittlewoodpolynomials
first_indexed 2023-05-20T17:32:50Z
last_indexed 2023-05-20T17:32:50Z
_version_ 1796153537756921856