Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently st...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149369 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149369 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1493692019-02-22T01:23:32Z Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials van Diejen, J.F. Emsiz, E. We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently studied in detail by Venkateswaran. 2013 Article Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D52; 81T25; 81R50; 82B23 DOI: http://dx.doi.org/10.3842/SIGMA.2013.077 http://dspace.nbuv.gov.ua/handle/123456789/149369 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently studied in detail by Venkateswaran. |
format |
Article |
author |
van Diejen, J.F. Emsiz, E. |
spellingShingle |
van Diejen, J.F. Emsiz, E. Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
van Diejen, J.F. Emsiz, E. |
author_sort |
van Diejen, J.F. |
title |
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials |
title_short |
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials |
title_full |
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials |
title_fullStr |
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials |
title_full_unstemmed |
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials |
title_sort |
boundary interactions for the semi-infinite q-boson system and hyperoctahedral hall-littlewood polynomials |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149369 |
citation_txt |
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT vandiejenjf boundaryinteractionsforthesemiinfiniteqbosonsystemandhyperoctahedralhalllittlewoodpolynomials AT emsize boundaryinteractionsforthesemiinfiniteqbosonsystemandhyperoctahedralhalllittlewoodpolynomials |
first_indexed |
2023-05-20T17:32:50Z |
last_indexed |
2023-05-20T17:32:50Z |
_version_ |
1796153537756921856 |