Integrable Hierarchy of the Quantum Benjamin-Ono Equation

A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin-Ono equation is constructed by using the Lax matrix. The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables x₁,x₂,…. This construction provides explicit expressions for the Hami...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Nazarov, M., Sklyanin, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149370
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrable Hierarchy of the Quantum Benjamin-Ono Equation / M. Nazarov, E. Sklyanin // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149370
record_format dspace
spelling irk-123456789-1493702019-02-22T01:23:33Z Integrable Hierarchy of the Quantum Benjamin-Ono Equation Nazarov, M. Sklyanin, E. A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin-Ono equation is constructed by using the Lax matrix. The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables x₁,x₂,…. This construction provides explicit expressions for the Hamiltonians in terms of the power sum symmetric functions pn=x₁ⁿ+x₂ⁿ+⋯ and is based on our recent results from [Comm. Math. Phys. 324 (2013), 831-849]. 2013 Article Integrable Hierarchy of the Quantum Benjamin-Ono Equation / M. Nazarov, E. Sklyanin // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D52; 05E05; 37K10; 81Q80 DOI: http://dx.doi.org/10.3842/SIGMA.2013.078 http://dspace.nbuv.gov.ua/handle/123456789/149370 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin-Ono equation is constructed by using the Lax matrix. The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables x₁,x₂,…. This construction provides explicit expressions for the Hamiltonians in terms of the power sum symmetric functions pn=x₁ⁿ+x₂ⁿ+⋯ and is based on our recent results from [Comm. Math. Phys. 324 (2013), 831-849].
format Article
author Nazarov, M.
Sklyanin, E.
spellingShingle Nazarov, M.
Sklyanin, E.
Integrable Hierarchy of the Quantum Benjamin-Ono Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Nazarov, M.
Sklyanin, E.
author_sort Nazarov, M.
title Integrable Hierarchy of the Quantum Benjamin-Ono Equation
title_short Integrable Hierarchy of the Quantum Benjamin-Ono Equation
title_full Integrable Hierarchy of the Quantum Benjamin-Ono Equation
title_fullStr Integrable Hierarchy of the Quantum Benjamin-Ono Equation
title_full_unstemmed Integrable Hierarchy of the Quantum Benjamin-Ono Equation
title_sort integrable hierarchy of the quantum benjamin-ono equation
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149370
citation_txt Integrable Hierarchy of the Quantum Benjamin-Ono Equation / M. Nazarov, E. Sklyanin // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT nazarovm integrablehierarchyofthequantumbenjaminonoequation
AT sklyanine integrablehierarchyofthequantumbenjaminonoequation
first_indexed 2023-05-20T17:32:50Z
last_indexed 2023-05-20T17:32:50Z
_version_ 1796153542259507200