Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies

We present the results of theoretical modeling of supermassive black hole binary (SMBHB) mergers using direct 2 -body simulations with a Hermite integration scheme. The BH’s gravitational interaction is described based on the post-Newtonian (PN-terms) approximation up to the 3.5 PN-terms. We carry o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Sobolenko, M., Berczik, P., Spurzem, R., Kupi, G.
Format: Artikel
Sprache:English
Veröffentlicht: Головна астрономічна обсерваторія НАН України 2017
Schriftenreihe:Кинематика и физика небесных тел
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/149634
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies / M. Sobolenko, P. Berczik, R. Spurzem, G. Kupi // Кинематика и физика небесных тел. — 2017. — Т. 33, № 1. — С. 22-37. — Бібліогр.: 71 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149634
record_format dspace
spelling irk-123456789-1496342019-03-02T01:23:07Z Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies Sobolenko, M. Berczik, P. Spurzem, R. Kupi, G. Внегалактическая астрономия We present the results of theoretical modeling of supermassive black hole binary (SMBHB) mergers using direct 2 -body simulations with a Hermite integration scheme. The BH’s gravitational interaction is described based on the post-Newtonian (PN-terms) approximation up to the 3.5 PN-terms. We carry out a large set of runs using a parametric description of SMBHB orbits. Представлены результаты теоретического моделирования слияния двойных сверхмассивных чёрных дыр с помощью прямого 2-тельного моделирования с эрмитовской схемой интегрирования. Гравитационное взаимодействие черных дыр описывается постньютоновским приближением до 3.5 PN-терма. На основе параметрического описания орбит ДСМЧД получен большой набор моделей. Приводяться результати теоретичного моделювання злиття подвійних надмасивних чорних дір за допомогою прямого 2-тільного моделювання з ермітівською схемою інтегрування. Гравітаційна взаємодія чорних дір описується постньютонівським наближенням до 3.5 PN-терму. На основі параметричного опису орбіт ПНЧД отримано великий набір моделей. 2017 Article Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies / M. Sobolenko, P. Berczik, R. Spurzem, G. Kupi // Кинематика и физика небесных тел. — 2017. — Т. 33, № 1. — С. 22-37. — Бібліогр.: 71 назв. — англ. 0233-7665 http://dspace.nbuv.gov.ua/handle/123456789/149634 524.882 en Кинематика и физика небесных тел Головна астрономічна обсерваторія НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Внегалактическая астрономия
Внегалактическая астрономия
spellingShingle Внегалактическая астрономия
Внегалактическая астрономия
Sobolenko, M.
Berczik, P.
Spurzem, R.
Kupi, G.
Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies
Кинематика и физика небесных тел
description We present the results of theoretical modeling of supermassive black hole binary (SMBHB) mergers using direct 2 -body simulations with a Hermite integration scheme. The BH’s gravitational interaction is described based on the post-Newtonian (PN-terms) approximation up to the 3.5 PN-terms. We carry out a large set of runs using a parametric description of SMBHB orbits.
format Article
author Sobolenko, M.
Berczik, P.
Spurzem, R.
Kupi, G.
author_facet Sobolenko, M.
Berczik, P.
Spurzem, R.
Kupi, G.
author_sort Sobolenko, M.
title Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies
title_short Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies
title_full Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies
title_fullStr Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies
title_full_unstemmed Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies
title_sort fast coalescence of post-newtonian supermassive black hole binaries in real galaxies
publisher Головна астрономічна обсерваторія НАН України
publishDate 2017
topic_facet Внегалактическая астрономия
url http://dspace.nbuv.gov.ua/handle/123456789/149634
citation_txt Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies / M. Sobolenko, P. Berczik, R. Spurzem, G. Kupi // Кинематика и физика небесных тел. — 2017. — Т. 33, № 1. — С. 22-37. — Бібліогр.: 71 назв. — англ.
series Кинематика и физика небесных тел
work_keys_str_mv AT sobolenkom fastcoalescenceofpostnewtoniansupermassiveblackholebinariesinrealgalaxies
AT berczikp fastcoalescenceofpostnewtoniansupermassiveblackholebinariesinrealgalaxies
AT spurzemr fastcoalescenceofpostnewtoniansupermassiveblackholebinariesinrealgalaxies
AT kupig fastcoalescenceofpostnewtoniansupermassiveblackholebinariesinrealgalaxies
first_indexed 2025-07-12T22:34:34Z
last_indexed 2025-07-12T22:34:34Z
_version_ 1837482306014543872
fulltext UDK 524.882 M. Sobolenko1, P. Berczik1,2,4, R. Spurzem2,3,4, G. Kupi5 1Main As tro nom i cal Ob ser va tory Na tional Acad emy of Sci ences of Ukraine 27 Akademika Zabolotnoho St., 03680, Kyiv, Ukraine sobolenko@mao.kiev.ua, 2National As tro nom i cal Ob ser va to ries of China and Key Lab o ra tory of Com pu ta tional Astrophysics Chi nese Acad emy of Sci ences, 20A Datun Rd., Chaoyang Dis trict, 100012, Beijing, China 3Kavli In sti tute for As tron omy and As tro phys ics Pe king Uni ver sity, Beijing 100871, China 4Astronomisches Rechen-Institut, Zentrum fhr Astronomie, Uni ver sity of Hei del berg M`nchhofstrasse 12-14, 69120, Hei del berg, Ger many 5Rochester In sti tute of Tech nol ogy Roch es ter, NY 14623, USA Fast co ales cence of post-New to nian Supermassive Black Hole Bi na ries in real gal ax ies We pres ent the re sults of the o ret i cal mod el ing of supermassive black hole bi nary (SMBHB) merg ers us ing di rect 2 -body sim u la tions with a Hermite in te gra tion scheme. The BH’s grav i ta tional in ter ac tion is de scribed based on the post-New to nian (PN terms) ap prox i ma tion up to the 3.5PN terms. We carry out a large set of runs us ing a para met ric de scrip tion of SMBHB or - bits. The fi nal time of the SMBHs grav i ta tional co ales cence is parametrized as a func tion of ini tial ec cen tric ity e0 and mass ra tio q of the bi nary. We carry out de tailed tests of our cod ing. We tested our PN terms against the an a lytic pre scrip tion de scribed at the the o ret i cal works in mid dle 60th. The grav i ta tional ra di a tion po lar iza tion am pli tudes h+ and h´ from the SMBHBs merg ing pro cess are also an a lyzed. Based on our nu mer i cal work we es ti mate the ex pected merg ing time for a list of se lected po ten tial SDSS SMBHBs. Our re sults show that the merg ing time is a strong func tion of the as sumed ini tial ec cen tric i ties and fall within the range of thou sands years. ØÂÈÄÊÅ ÇËÈÒÒß ÏÎÑÒÍÜÞÒÎͲÂÑÜÊÈÕ ÏÎIJÉÍÈÕ ÍÀÄÌÀ - ÑÈ ÍÈÕ ×ÎÐÍÈÕ Ä²Ð Ó ÐÅÀËÜÍÈÕ ÃÀËÀÊÒÈÊÀÕ, Ñîáî ëåí - êî Ì. Î., Áåðöèê Ï. Ï., Øïóðçåì Ð., Êóï³ Ã. — Ïðèâîäÿòüñÿ ðå ç óëü - òàòè òåîðåòè÷íîãî ìîäåëþâàííÿ çëèòòÿ ïîäâ³éíèõ íàäìà ñèâíèõ ÷îð íèõ ä³ð çà äîïîìîãîþ ïðÿìîãî 2-ò³ëüíîãî ìîäå ëþâàííÿ ç åðì³ò³â - ñüêîþ ñõåìîþ ³íòåãðóâàííÿ. Ãðàâ³òàö³éíà âçàºìîä³ÿ ÷îðíèõ ä³ð îïèñó - ºòüñÿ ïîñòíüþòîí³âñüêèì íàáëèæåííÿì äî 3.5PN-òåðìó. Íà îñíîâ³ ïàðàìåòðè÷íîãî îïèñó îðá³ò ÏÍ×Ä îòðèìàíî âå ëè êèé íàá³ð ìîäåëåé. 21 ISSN 0233-7665. Êèíåìàòèêà è ôèçèêà íåáåñ. òåë. 2017. Ò. 33, ¹ 1 © M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI, 2017 22 M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI ʳíöåâèé ÷àñ ãðàâ³òàö³éíîãî çëèòòÿ ÏÍ×Ä ïà ðà ìåòðèçîâàíî ÿê ôóí - ê ö³þ ïî÷àòêîâîãî åêñöåíòðèñèòåòó e0 òà â³ä íî øåííÿ ìàñ q ïîäâ³é - íî¿. Ïðîâåäåíî äåòàëüíå òåñòóâàííÿ íàøîãî êîäó. Ìè ïîð³âíþâàëè PN-òåðìè ç àíàë³òè÷íèì îïèñîì ó òåîðåòè÷íèõ äîñë³äæåííÿõ ñåðå - äèíè 1960-õ ðð. Ïðîàíàë³çîâàíî àìïë³òóäó ïîëÿ ðèçîâàíîãî ãðàâ³òà - ö³éíîãî âèïðîì³íþâàííÿ h+ òà h´ ï³ä ÷àñ çëèòòÿ ÏÍ×Ä. Ç âèêîðèñ - òàííÿì íàøîãî ÷èñëîâîãî êîäó îö³ íå íî î÷³êóâàíèé ÷àñ çëèòòÿ äëÿ ñïèñ êó âèáðàíèõ ïîòåíö³éíèõ SDSS ÏÍ×Ä. Íàø³ ðåçóëüòàòè ïîêà - çóþòü, ùî ÷àñ çëèòòÿ äîñÿãຠòèñÿ÷ ðî ê³â òà º ñòðîãîþ ôóíêö³ºþ îáðàíîãî ïî÷àò êîâîãî åêñöåíò ðè ñè òåòó. ÁÛÑÒÐÎÅ ÑËÈßÍÈÅ ÏÎÑÒÍÜÞÒÎÍÎÂÑÊÈÕ ÄÂÎÉÍÛÕ ÑÂÅÐÕ - ÌÀÑÑÈÂÍÛÕ ×ÎÐÍÛÕ ÄÛÐ Â ÐÅÀËÜÍÛÕ ÃÀËÀÊÒÈÊÀÕ, Ñîáî - ëåí êî Ì. À., Áåðöèê Ï. Ï., Øïóðçåì Ð., Êóïè Ã. — Ïðåä ñòàâëåíû ðå - çóëüòàòû òåîðåòè÷åñêîãî ìîäåëèðîâàíèÿ ñëèÿíèÿ äâîéíûõ ñâåðõ ìàñ - ñèâíûõ ÷¸ðíûõ äûð ñ ïîìîùüþ ïðÿìîãî 2-òåëüíîãî ìîäåëèðîâàíèÿ ñ ýðìèòîâñêîé ñõåìîé èíòåãðèðîâàíèÿ. Ãðàâèòàöèîííîå âçàèìî äåé ñò - âèå ÷îðíûõ äûð îïèñûâàåòñÿ ïîñòíüþòîíîâñêèì ïðèáëè æåíèåì äî 3.5PN-òåðìà. Íà îñíîâå ïàðàìåòðè÷åñêîãî îïèñàíèÿ îð áèò ÄÑÌ×Ä ïîëó÷åí áîëüøîé íàáîð ìîäåëåé. Êîíå÷íîå âðåìÿ ãðàâèòà öèîííîãî ñëè ÿíèÿ ÄÑÌ×Ä ïàðàìåòðèçîâàíî êàê ôóíêöèÿ íà÷àëüíîãî ýêñöåí ò - ðèñåòà e0 è îòíîøåíèÿ ìàññ q äâîéíîé. Ïðîâåäåíî äåòàëüíîå òåñ - òèðîâàíèå íàøåãî êîäà. Ñðàâíèâàëèñü PN-òåðìû ñ àíàëèòè÷åñêèì îïè ñàíèåì â òåîðåòè÷åñêèõ èññëåäîâàíèÿõ ñðåäèíû 1960-õ ãã. Ïðî - àíà ëèçèðîâàíà àìïëèòóäà ïîëÿðè çîâàííîãî ãðàâèòà öèîííîãî èçëó ÷å - íèÿ h+ è h´ âî âðåìÿ ñëèÿíèÿ ÄÑÌ×Ä. Ñ èñïîëüçîâàíèåì íàøåãî ÷èñ - ëåííîãî êîäà îöåíåíî îæèäàå ìîå âðåìÿ ñëèÿíèÿ äëÿ ñïèñêà âûáðàííûõ ïîòåí öèàëüíûõ SDSS ÄÑÌ×Ä. Íàøè ðåçóëüòàòû ïîêàçûâàþò, ÷òî âðåìÿ ñëèÿíèÿ äîñòè ãàåò òûñÿ÷ ëåò è ÿâëÿåòñÿ ñòðîãîé ôóíêöèåé âûáðàí íîãî íà÷àëüíîãî ýêñöåíòðè ñè òå òà. IN TRO DUC TION The for ma tion and evo lu tion of gal ax ies and their SMBHs are con nected in sev eral ways. This re la tion can be found al ready at the early phases of protogalaxies for ma tion [64], also at the later stages of hi er ar chi cal LCDM cos mol ogy [15, 31, 63] and also dur ing the stages of dif fer ent gal axy merg - ers [36, 42, 51]. One of the most sim ple and plau si ble chan nel of the SMBH mass growth is an ac cu mu la tion of the BH’s mass dur ing host-gal axy merg - ers. Gas ac cre tion can sig nif i cantly in crease the mass of BHs dur ing “wet” merg ing that trig gers star for ma tion [3, 14, 25, 45, 57, 61]. Stel lar ac cre tion can also in crease BH masses even in “dry” merg ing dur ing the for ma tion the gi ant el lip ti cal gal ax ies [5, 44, 46, 67, 71]. The M — s re la tion, that shows a con nec tion be tween the mass of the SMBH and the mass of the cen - tral bulge of their host gal ax ies [30], we as sume is ev i dence for such a sce - nario. The fact that the dis tri bu tion of the most lu mi nous and mas sive ac tive ga lac tic nu clei peaks at higher redshifts also sup port this idea [34]. SMBHBs in side merg ing gal ax ies could be one of the most pow er ful sources of grav i ta tional waves (GW), which can be de tected by the Pul sar Tim ing Ar ray (PTA) or fu ture space-based mis sions, such as LISA/eLISA, DESIGO/BBO [1, 33, 69]. The dy nam i cal evo lu tion of SMBHBs in the cen ter of a merged stel lar sys tem can be tra di tion ally di vided in three phases [4]. (I) Two BHs can form a pair in side the merg ing host gal axy due to dy - nam i cal fric tion in the stel lar back ground. Then these com po nents sink into the cen tre of the stel lar dis tri bu tion. SMBHBs start to be “hard” when the length of the semimajor axis of the bi nary reaches the value: a a G q m M h£ º » + æ è ç ö ø ÷ æ è çç ö ø ÷÷ æ è m s s 4 2 7 1 10 2002 2 8 . pc km/s8 çç ö ø ÷÷ -2 , (1) where G is a grav i ta tional con stant, mass of the BH’s is m2 £ m1 , mass ra tio is q m m= 2 1/ , m = +m m m m1 2 1 2/( ) is a re duced mass, to tal mass is M tot = m m1 2+ . This means that the bind ing en ergy per unit mass | |/E M tot = G am /2 ex ceeds ~ s 2 (the am bi ent stel lar ve loc ity dis per sion) [50]. (II) Due to the sling shot in ter ac tion mech a nism the bi nary can con tinue to harden via three-body scat ter ing of sin gle stars. If star’s or bit in ter sects with the SMBHB or bit, a com plex three-body in ter ac tion can even tu ally lead to the “ejec tion” of the star. This “ejected” star car ries away en ergy and an gu lar mo men tum from the binary (see ref er ences in [49, 68, 70]). But if we as sume spher i cal sym me try, the loss cone of the bi nary BH sys tem can be de pleted by the sling shot mech a nism be fore this [2, 27]. There fore the sys tem hard en ing time can be more than the Hub ble time [52]. This is the so called “fi nal parsec prob lem” which can be solved in N-body sim u la tions as sum ing a more re al is tic stel lar par ti cle dis tri bu tion in a ro tat ing sys tem [6, 39], ob late / triaxial potential [29, 38, 60] or some com - bi na tion of these con fig u ra tions. (III) At the third stage the com po nents sink to ward to the sep a ra tion when GW emis sion be gins to be ef fi cient. Fi nally, the bi nary inspirals down to the co ales cence, emit ting a strong GW sig nal. For such a merger the two SMBHs have to reach a crit i cal sep a ra tion in a time shorter than the Hub ble time (few Gyr): a f e q q M M GW tot» ´ + æ è çç ö ø ÷÷ -2 10 1 10 3 1 4 1 4 1 2 6 3 4 ( ) ( ) / / / / 8 pc, (2) where f e e e e( ) [ ( / ) ( / ) ]( ) /= + + - -1 73 24 37 96 12 4 2 7 2 is a func tion of the bi nary ec cen tric ity e [58, 59]. To es ti mate the SMBHBs real merg ing times, we need to make our cal - cu la tions with the real speed of light val ues. Such N-body sim u la tions are al ready avail able in the lit er a ture (for ex am ple [38, 40]). But on the real merg ing gal axy scale such sim u la tions re quire a lot of com put ing re sources. 23 FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE In this pa per we pro pose a slightly dif fer ent ap proach. We per form sim u la - tions for dif fer ent sets of pa ram e ters with var i ous “para met ric” val ues of light speed (for ex am ple see [9]). To ex plore the con nec tion be tween the real merg ing time Tmrg , the to tal mass M tot of the SMBHB and ini tial sep a - ra tion R be tween the BHs we es ti mate a scal ing be tween the merg ing time Tmrg and the speed of the light c as sum ing the de pend ence be tween these pa - ram e ters. NU MER I CAL METH ODS AND INI TIAL CON DI TIONS Some nu mer i cal de tails. For the two BHB dy nam i cal or bit in te gra tion, we use the pub licly avail able jGPU* [7, 8] with a 4th or der Hermite in te gra tor and block hi er ar chi cal in di vid ual time step scheme. This Hermite scheme re quires us to know the ac cel er a tion and its first time-de riv a tive, called jerk. Be cause we use this Hermite scheme for our PN runs, we need to in clude the PN cor rec tions also to the ac cel er a tion and jerk terms. In the jGPU code we use the gen er al ized “Aarseth” type cri te ria for the time step def i ni tion [53]: Dt A A p p p = æ è çç ö ø ÷÷- - h ( ) ( ) / ( )1 2 1 3 , (3) where A k k k k( ) ( ) ( ) ( )| || | | |= +- +a a a1 1 2 . (4) Here, a ( )k is the kth de riv a tive of ac cel er a tion, p is the or der of the in te gra tor, hp is the ac cu racy pa ram e ter. For a 4th-or der Hermite scheme the timestep looks like: Dt A A = h4 1 2 ( ) ( ) , (5) where A ( ) ( ) ( ) ( )| || | | |1 0 2 1 2= +a a a , A ( ) ( ) ( ) ( )| || | | |2 1 3 2 2= +a a a . (6) For all our runs we use the h4 = 0.018 pa ram e ter. Post-New to nian for mal ism. We use a post-New to nian for mal ism in the 2-body code for cal cu lat ing the rel a tiv is tic bi nary sys tems dy nam ics. The re sults for up to 2PN and even up to 2.5PN equa tions of bi nary mo tion in har monic co or di nates were ob tained by Damour and Deruelle [17—20, 24]. For the 3PN and 3.5PN terms we can use two dif fer ent ways of com pu - ta tion. One of the pos si bil i ties is to use the ADM-Hamiltonian for mal ism of gen eral rel a tiv ity [22, 54—56]. Phys i cally equiv a lent re sults [21, 23] can be ob tained from the post-New to nian it er a tion [11], when we com pute the equa tion of mo tion di rectly (in stead of via a Hamiltonian) in har monic co - or di nates. The equa tion of mo tion is a power se ries of 1/c, where n-PN is pro por - tional to ( / )v c n2 . Sche mat i cally, one can write the cor rec tion for ac cel er a - tion dur ing the mo tion of ob ject in bi nary sys tem as [19, 65]: 24 M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI * ftp://ftp.mao.kiev.ua/pub/berczik/phi-GPU/ a a a a a a aNoSpin N c c c c c = + + + + + 1 1 1 1 1 2 1 4 2 5 2 5 6 3 7 3PN PN PN PN. .5 8 1 PN + æ è ç ö ø ÷O c , (7) where a N is the clas si cal New to nian ac cel er a tion; a1PN , a 2PN , a 3PN are the non dissipative terms which “con serve” the en ergy of the sys tem. The a 2 5. PN , a 3 5. PN are the dissipative terms which “carry out” en ergy from the sys tem due to GW emis sion. We ap ply all PN cor rec tions up to or der O c( / )1 8 , so the 3.5PN cor rec tion is the high est or der that we take into ac - count. To com pare our re sults with the an a lyt i cal so lu tion from clas si cal ar - ti cles [58, 59] we use the code just with the sin gle 2.5PN term. Sim i lar to the equa tion of mo tion in the cen tre of mass frame [10] the ac cel er a tion for one par ti cle can be writ ten in the fol low ing form: a v n vNoSpin d dt GM r = = - + + 2 1[( ) ]A B , (8) where r =| |r is the sep a ra tion be tween par ti cles, r r r= -1 2 is the po si tion of the par ti cles, n r= /r is the nor mal ized rel a tive po si tion vec tor, v v v= -1 2 is the rel a tive ve loc ity. The func tions A and B con tain dif fer ent or ders of the PN ap prox i ma tion (sim i lar to Eq. (7)). For ex am ple the first PN cor rec tion term is given by: A Gm r Gm r 1 1 2 2 2 1 2 1 2 2 25 4 3 2 4 2PN = + + × - + × - é ëê ù ûú ( ) ( )n v v v v v , (9) B1 1 24 3PN = × - ×( ) ( )n v n v . (10) De tailed ref er ences and the com plete de scrip tion of the prob lem can be found in works such as [9, 10, 43]. The com plete equa tions in post-New to - nian for mal ism up to 3.5PN are given also in [10]. Add ing the spin terms into the equa tion of mo tion we can de scribe as: a a a a aSpin NoSpin SO SS SO c c c = + + + 1 1 1 3 1 5 4 2 5 2 5. , , . ,PN PN PN , (11) where a1 5. ,PN SO and a 2 5. ,PN SO are the spin-or bit cou pling terms, a 2PN ,SS is the spin-spin cou pling term (for ex am ple [26]). Now one can write the full equa tion (like Eq. (7)): a a a a a aSpin N SO SS c c c = + + + + + 1 1 1 2 1 3 1 5 4 2 2PN PN PN PN. , ,( ) + + + + + æ è ç ö ø 1 1 1 1 5 2 5 2 5 6 3 7 3 5 8c c c O c SO( ). . , .a a a aPN PN PN PN ÷, (12) where the full ex pres sion for a1 5. ,PN SO and a 2 5. ,PN SO can be found in [26], for a 2PN ,SS can be found in [66]. The value of the phys i cal spin is cho sen from the the next ex pres sion: S Gm c true =c 2 , (13) where the value of c is [0, 1]. At the cen tre of the bi nary mass frame we have the spin S S Sº +1 2 . We use two body dy nam ics and spin-spin and spin-or bit 25 FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE cou pling just for cal cu la tion of the first or der of the grav i ta tional wave form con straint (e.g. [41]): h G Dc v v GM r n nij i j i j» - é ëê ù ûú 4 4 m , (14) where Q v v GMn n rij i j i j= -2( / ) is the usual quadrupole term (sec ond time de riv a tives of the mass quadrupole mo ment ten sor) and D is the lu mi nos ity dis tance. Choos ing the vir tual de tec tor ori en ta tion so that as the co or di nate axes co in cide with the source frame, we can de scribe the two-di men sional ma trix with only two in de pend ent el e ments: h h h h hij = - æ è çç ö ø ÷÷ + ´ ´ + . (15) From hij we can ob tain the am pli tude of po lar iza tion h+ and h´ [12, 16, 62]. Ini tial con di tions and de scrip tion of model. We as sume that the two point masses which rep re sents our BHs with masses m1 and m2 are placed at po si tions Y1 and Y2 on the Y axis (see Fig. 1). For our anal y ses we choose the nat u ral co or di nate sys tem of the two bod ies, con nected by the cen tre of mass of the sys tem. The ini tial or bital ve loc ity of the two point masses we chose so that the XY plane con tains the full or bit. The ini tial sep a ra tion be - tween the com po nents we de fined as R Y Y= +| | | |1 2 . We also set the BH’s mass ra tio q m m= 1 2/ . We as sume that m m1 2£ . We also fix the to tal BH sys tem mass M m mtot = +1 2 . The Keplerian mo tion of the two bod ies can be fully de scribed by two main or bital pa ram e ters: the semimajor axis a and ec cen - tric ity e. We can write the bind ing en ergy of the bi nary sys tem: | |E Gm m a G M a tot= =1 2 2 2 m , (16) where m = m m M tot1 2 / is the re duced mass. We also fix as a pa ram e ter the bi - nary ini tial or bital ec cen tric ity e0 . The ini tial setup of the par ti cles we show in Fig ure 1. For fur ther cal cu la tion we as sume the nor mal iza tion R = 1 and M m mtot = +1 2 = 1. 26 M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI Fig . 1. Con fig u ra tion of the sys tem with two BHs We use the N-body (NB) or called HJnon units [32] where we also ac - cept G = 1 and set the mass units M and length units R to unity*. There fore the phys i cal val ues of mass, length, en ergy, ve loc ity and time will be in the form: [M] = M, [L] = R, (17) [E] = GM R 2 , (18) [ ] , [ ] / / V GM R T R GM = æ è ç ö ø ÷ = æ è çç ö ø ÷÷ 1 2 3 1 2 . (19) Con se quently the light speed c in N-body units is: c c V c GM R M M R = = æ è ç ö ø ÷ = × æ è çç ö ø ÷÷ - - 0 0 1 2 8 1 2 3 14213 10 10 / / 8 pc æ è ç ö ø ÷ 1 2/ , (20) where c0 is the light speed in phys i cal units. DIS CUS SION Scal ing rou tine be tween merg ing time Tmrg and “para met ric” speed of the light was made for all mod els from Ta ble 1 (for ex am ple see Fig. 2 for sys - tem with pa ram e ters M tot = 1 [NB], q = 0.5, R = 1 [NB], e0 = 0.25). Based on our post-New to nian for mal ism (Eqs (7)-(12)) we can the o ret i cally ex pect the re la tion ship be tween merg ing time (which is di rectly pro por tional to the en ergy losses in our post-New to nian for mal ism) and the light speed: T b c T d c p cmrg mrg5 5 5 7 5 7µ × µ × + ×+, , (21) where b, d and p are the co ef fi cients of the scal ing. As we can see from Fig. 2 the dif fer ence be tween the two merg ing times are neg li gi ble. So, in this pa per we use the Tmrg 5 as a ba sic ap prox i ma tion for the bi nary merg ing time Tmrg . 27 FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE e0 b q = 1 q = 0.5 q = 0.333 q = 0.25 q = 0.2 q = 0.02 0.00 7.863E-02 8.827E-02 1.043E-01 1.218E-01 1.397E-01 8.611E-01 0.25 2.578E-02 2.900E-02 3.437E-02 4.027E-02 4.639E-02 3.375E-01 0.50 5.584E-03 6.280E-03 7.440E-03 8.716E-03 1.004E-02 7.244E-02 0.75 4.648E-04 5.225E-04 6.186E-04 7.243E-04 8.339E-04 6.003E-03 0.95 1.893E-06 2.126E-06 2.514E-06 2.938E-06 3.383E-06 2.425E-05 0.99 8.146E-09 9.123E-09 1.076E-08 1.255E-08 1.441E-08 1.023E-07 Ta ble 1. The scale fac tor b from Eq. (21) for var i ous mass ra tio q and ini tial ec cen tric ity e0 (sep a ra tion for each sys tem R = 1 [NB] and to tal mass Mtot =1 [NB]) * http://en.wikipedia.org/wiki/N-body_units We study the evo lu tion of sys tems with var i ous mass ra tios and ini tial ec cen tric i ties, i. e. with var i ous or bits. We use the fol low ing sets of the pa - ram e ters: q = 1, 0.5, 0.333, 0.25, 0.2, 0.02 and e = 0.00, 0.25, 0.50, 0.75, 0.95, 0.99. We ap ply the scal ing fac tors from Ta ble 1 to find the real merg ing times Tmrg (in phys i cal units) where the phys i cal light speed is c = 2.99792458 ´ ´ 108 m/s. We ap ply the above de scribed “c-scal ing pro ce dure” for a wide range of phys i cal pa ram e ters for masses (10 5106 9M M Mtot8 8£ £ × ) and the ini tial sep a ra tion be tween the BHs (10 3- £ £R 102 pc). For each in di vid ual model we es ti mate the re la tion be tween the merg ing time Tmrg , sep a ra tion be tween the BHs R and to tal mass M tot of the SMBHB (Fig. 3, 4). For ex am ple us ing Fig. 3 for sys tem with M tot = 109M8, q = 0.5, R = 10 pc, e0 = 0.5 merg ing time Tmrg » 1700 years. In a real cos mo log i cal merg ing sce nario we ex pect that the SMBHBs merger does not evolve in iso la tion. High res o lu tion cos mo log i cal nu mer i - cal sim u la tions (see ref er ences in [28, 37, 48]) show us that SMBHB merg - ers typ i cally need to meet the next large gal axy in a time scale of 1-2 Gyr. If we as sume the ex is tence of a SMBH in this third gal axy too, in this case our bi nary BH is trans formed to a tri ple BH sys tem. Ex ten sive di rect N-body sim u la tions of sys tem with three BHs show that such a con fig u ra tion is highly un sta ble [1, 13]. So, we as sume that if in a time scale of 1-2 Gyr our orig i nal BHB sys tem does not merge, the pos si bil ity of such a merger be - comes very un likely. In Fig ures 3, 4 we show the 1 Gyr merg ing time as the solid black lines for the dif fer ent ini tial ec cen tric i ties. For some fixed time this re la tion can be writ ten in the form: R M SMBHB=10 6 3 4b( ), / . We found that with the rise of ini tial ec cen tric ity e0 the merg ing time Tmrg of the sys tem de creases. This be hav ior is valid for mass ra tios from q = = 1 to q = 0.2 and even for extremal q = 0.02. The gen eral con clu sion from our set of runs is that the lower ini tial ec cen tric ity (cir cu lar) or bits gen er ally 28 M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI Fig . 2. Re la tion be tween the merg ing time Tmrg and light speed c for sys tem from Ta ble 1 (line 1 — Tmrg = bc5, 2 — Tmrg = dc5 + pc7, stars — simulation). Ini tial ec cen tric ity e0 = 0.25 and mass ra tio q = 0.5 have a lon ger merg ing time. For higher mass ra tios even the ec cen tric or bits be come more sta ble. Com par i son of the sim u la tion re sults and the o ret i cal work [58, 59] (which in cludes in the ex pres sions only for the 2.5PN term) is shown in (Fig. 5, 6). For this nu mer i cal test we use the pa ram e ters M tot = 2 [NB], q = = 1, R = 1 [NB], e0 = 0.7, c = 15 [NB] and we also in clude only the 2.5PN term. Our test sim u la tions show that the nu mer i cal model be haves very sim - i lar to the the o ret i cal curve. 29 FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE Fig . 3. The color coded fi nal merg ing time Tmrg of SMBHB as a func tion of to tal mass and ini tial sep a ra tion of the bi nary. Each sep a rate plot shows the merg ing time evo lu tion for the spe cific mass ra tio of the bi nary: q = 1 (a), 0.5 (b), 0.333 (c), 0.25 (d), 0.2 (e), 0.02 (f). On each plots we in di cate the 1 Gyr merg ing time line as a func tion of the ini tial ec cen tric ity e0 of the bi nary. Col ored gamma for value e0 = 0.00 For ob tain ing the GW con straints, for the se lected test case (M tot = 108 M8, q = 0.5, R = 0.01 pc, e0 = 0.95, S1 = [0, 0, 1], S2 = [0, 0, 1] ), we use the spin-spin and spin-or bit cou pling which was de scribed above [12]. In Fig. 7 we show the first periastron passes for h+ and h´. In Fig. 8 we see the wave form dur ing inspiraling just for h+ po lar iza tion (the h´ looks sim i lar). In Ta ble 2 we pres ent the GW fre quen cies for BHs with typ i cal masses and bi nary sys tem or bital pa ram e ters. 30 M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI Fig . 4. The color coded fi nal merg ing time Tmrgof SMBHB as a func tion of to tal mass and ini tial sep a ra tion of the bi nary. Each sep a rate plot shows the merg ing time evo lu tion for the spe cific mass ra tio of the bi nary: q = 1 (a), 0.5 (b), 0.333 (c), 0.25 (d), 0.2 (e), 0.02 (f). On each plots we in di cate the 1 Gyr merg ing time line as a func tion of the ini tial ec cen tric ity e0 of the bi nary. Col ored gamma for value e0 = 0.95 Us ing our well tested PN-rou tine we es ti mate the pos si ble BHBs merg - ing time for the set of SDSS ob jects [35]. The main pa ram e ters of the bi nary BHs we pres ent in Ta ble 3. We es ti mate bi nary BH ex pected merg ing times as sum ing dif fer ent ec cen tric i ties (e0 = 0.00 — 0.99) of the or bits ex cept J1201, for which we e0 = 0.3. Also we cal cu lated the merg ing time for the serendipitously dis cov ered SDSS J120136.02 + 3000305.5 (z = 0.146) with sys tem pa ram e ters M tot = 1.08´107M8, q = 0.08, rmax = 1.3 mpc, e0 = 0.3 [47]. 31 FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE Fig . 5. Com par i son the sim u la tion’s evo lu tion (dots) of the semimajor axis a with an a lyt i cal re sults (line) for a sys tem with fol low ing ini tial pa ram e ters: M tot = 2 [NB], q = 1, R = 1 [NB], e0 = 0.6, c = 15 [NB] with just turn ing on 2.5PN Fig . 6. Com par i son the sim u la tion’s evo lu tion (dots) of the ec cen tric ity e with an a lyt i cal re sults (line) for a sys tem with fol low ing ini tial pa ram e ters: M tot = 2 [NB], q = 1, R = 1 [NB], e0 = 0.6, c = 15 [NB] with just turn ing on 2.5PN M tot / M8 R (rS) Tmrg , yr Torb , s n, mHz 109 104 0.6 866925 1.15 108 1045 631.5 55175 18.1 107 10451 655148.3 5933 169 Ta ble 2. The GW fre quency for BHs with typ i cal masses Mtot and sys tem pa ram e ters q = 0.5, e0 = 0.95, R = 0.01 pc, S 1=[0, 0, 1], S 2 =[0, 0, 1] SDSS ID z log (M tot /M8) rmax, mpc J075700.70+424814.5 1.17 9.1311 20 J002444.11+003221.4 0.40 9.5618 102 J004918.98+002609.4 1.94 9.3148 96 J161609.50+434146.8 0.49 8.1696 21 J093502.54+433110.7 0.46 9.3425 181 J032223.02-000803.5 0.62 8.2827 32 J095656.42+535023.2 0.61 8.2944 127 Ta ble 3. Con fig u ra tions of the sys tems for SDSS ob jects from [35] (q = 1) As we can see from Ta ble 4 some of the se lected SDSS ob jects have a quite short merg ing time even for mod er ately large ec cen tric i ties e0 ³ 0.75. Al most all of the se lected ob jects (ex cept one J0956) have ex pected merg - ing times only a few years for ini tial ec cen tric i ties e0 = 0. How ever J1201 has an es ti mated Tmrg = 3.27 Myr, that is not such a grat i fy ing re sult. Hope - fully our merg ing time pre dic tions can be tested with the larger SDSS4 ob - ser va tional cat a logues, which are right now in a phase of ob ser va tion. 32 M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI Fig . 8. Strain for a sys tem with pa ram e ters M tot = 108M 8 (q = 0.5), e0 = 0.95, R = 0.01 pc, S1 = [0, 0, 1], S 2 = [0, 0, 1] Fig . 7. Sim u lated strain from a GW dur ing the first periastron for a sys tem with M tot = 108M 8 (q = 0.5), e0 = 0.95, R = 0.01 pc, S1 = [0, 0, 1], S 2 = [0, 0, 1] e0 Tmrg , yr J0757 J0024 J0049 J1616 J0935 J0322 J0956 0.00 2.139E+04 6.906E+05 2.916E+06 1.767E+07 2.997E+07 4.390E+07 9.929E+09 0.25 6.796E+03 2.213E+05 9.385E+05 5.714E+06 9.672E+06 1.420E+07 3.214E+09 0.50 1.439E+03 4.738E+04 2.023E+05 1.241E+06 2.095E+06 3.086E+06 7.004E+08 0.75 1.221E+02 3.873E+03 1.668E+04 1.040E+05 1.745E+05 2.591E+05 5.920E+07 0.90 9.528E-01 6.635E+00 5.014E+02 4.195E+02 7.413E+02 1.046E+03 2.453E+05 0.99 9.255E-01 6.435E+00 7.780E+00 2.960E+00 1.946E+01 4.893E+00 1.007E+03 Ta ble 4. Ex pected merg ing time Tmrg for SMBHBs for the se lected SDSS ob jects as the func tion of the ec cen tric i ties CON CLU SION In our study we an a lyze the dy nam i cal be hav ior of SMBHBs. We use a highly ac cu rate di rect 2-body code where we ap ply the ad di tional PN terms up to 3.5PN for cal cu la tion of the grav i ta tional forces which act on the BHs and spin-spin and spin-or bit cou pling for cal cu la tion of GW con straints. As the main re sult we ob tain the re sult ing merg ing time Tmrg for a large set of ini tial mass ra tios q of the BBH, ini tial masses, ini tial sep a ra tions and or - bital ec cen tric i ties e0 . This data we pres ent as a set of color coded 3-D plots. We also make the orig i nal re sults pre sented on these plots for dif fer ent mass ra tios q and ini tial ec cen tric i ties e0 pub licly avail able*. Our PN treat ment was ex ten sively tested and the PN rou tines it self we also make pub licly avail able via the same link above. In our high or der di rect 2-body im ple - men ta tion we use not only the PN ac cel er a tions but also the first de riv a tives of this ac cel er a tions. Our BHBs test cal cu la tions show that for BH masses in range M tot = (106 — 109)M8 with a fixed ini tial sep a ra tion R = 0.01 pc and ini tial ec cen tric ity e0 = 0.95 the GW fre quen cies are well in side the LISA sen si tiv ity band (Ta ble 2) [9]. We use our PN rou tines to ap prox i mate the ex pected merg ing time for the se lected sam ple SDSS SMBHBs [35]. Our re sults show that for sig nif i cantly large ec cen tric i ties the ex pected merg ing time for these ob jects are in the range of years. AC KNOWL EDGE MENTS MS ac knowl edge the fi nan cial sup port by the NASU un der the Grant for young re search ers. MS and PB ac knowl edge also the spe cial sup port by the NASU un der the Main As tro nom i cal Ob ser va tory GRID/GPU com put ing clus ter golowood pro ject. RS and PB ac knowl edge sup port by Chi nese Acad emy of Sci ences through the Silk Road Pro ject at NAOC, through the “Qianren” spe cial for - eign ex perts pro gram of China. MS grate fully ac knowl edges sup port for col lab o ra tion vis its in Beijing un der the same program. Sup ported by the Stra te gic Pri or ity Re search Pro gram “The Emer gence of Cos mo log i cal Struc tures” of the Chi nese Acad emy of Sci ences, Grant N XDB09000000. The main part of the sim u la tions pre sented here was per formed on the ded i cated GPU clus ters kep ler at the ARI, funded un der the grants I/80 041-043 and I/81 396 of the Volks wagen Foun da tion and the grants 823.219-439/30 and /36 of the Min is try of Sci ence, Re search and the Arts of Baden-Whrttemberg, Ger many. The au thors are ac knowl edges the sup port of the Volks wagen Foun da - tion un der the Trilateral Part ner ships grant No. 90411. Part of the code de vel op ment work was con ducted us ing the re sources of the GPU clus ter laohu at the Cen ter of In for ma tion and Com put ing at the Na tional As tro nom i cal Ob ser va to ries, Chi nese Acad emy of Sci ences, 33 FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE * ftp://ftp.mao.kiev.ua/pub/sobolenko/ funded by the Min is try of Fi nance of Peo ple’s Re pub lic of China un der the grant ZDYZ2008-2. We also ac knowl edge the help ful com ments made by Ste phen Justham. 1. Amaro-Seoane P., Sesana A., Hoffman L., et al. Trip lets of supermassive black holes: as - tro phys ics, grav i ta tional waves and de tec tion // Mon. Notic. Roy. Astron. Soc.— 2010.—402.—P. 2308—2320. 2. Amaro-Seoane P., Spurzem R. The loss-cone prob lem in dense nu clei // Mon. Notic. Roy. Astron. Soc.—2001.—327.—P. 995—1003. 3. Barton E. J., Geller M. J., Kenyon S. J. Tid ally trig gered star for ma tion in close pairs of gal ax ies // Astrophys. J.—2000.—530.—P. 660—679. 4. Begelman M. C., Bland ford R. D., Rees M. J. Mas sive black hole bi na ries in ac tive ga lac - tic nu clei // Na ture.—1980.—287.—P. 307—309. 5. Bell E. F., Naab T., McIntosh D. H., et al. Dry merg ers in GEMS: The dy nam i cal evo lu - tion of mas sive early-type gal ax ies // Astrophys. J.—2006.—640.— P. 241—251. 6. Berczik P., Merritt D., Spurzem R., et al. Ef fi cient merger of bi nary supermassive black holes in nonaxisymmetric gal ax ies // Astrophys. J.—2006.—642.—P. 21—24. 7. Berczik P., Nitadori K., Zhong S., et al. High per for mance mas sively par al lel di rect N-body sim u la tions on large GPU clus ters // Inter. conf. “High Per for mance Com - put ing”, Kyiv, Ukraine, Oc to ber 8—10, 2011. — Kyiv, 2011.—P. 8—18. 8. Berczik P., Spurzem R., Wang L. Up to 700k GPU cores, Kep ler, and the Exascale fu ture for sim u la tions of star clus ters around black holes // Third In ter na tional Con fer ence “High Per for mance Com put ing” (HPC-UA 2013), Kyiv, Ukraine, Oc to ber 7—17, 2013. — Kyiv, 2013.—P. 52—59. 9. Berentzen I., Preto M., Berczik P., et al. Bi nary black hole merger in ga lac tic nu clei: Post-New to nian sim u la tions // Astrophys. J.—2009.—695.—P. 455—468. 10. Blanchet L. Grav i ta tional ra di a tion from post-New to nian sources and inspiralling com - pact bi na ries // Liv. Revs Relativ.—2006.—9.—114 p. 11. Blanchet L., Faye G., Ponsot B. Grav i ta tional field and equa tions of mo tion of com pact bi na ries to 5/2 post-New to nian or der // Phys. Rev. D.—1998.—58, N 12.—20 p. 12. Brem P. Ef fects of general rel a tiv ity in di rect N-body codes: Mas ter’s the sis. — Hei del - berg: Astronomisches Rechen-Institut, 2011.—85 p. 13. Brem P., Amaro-Seoane P., Spurzem R. Rel a tiv is tic merg ers of com pact bi na ries in clus ters: the fin ger print of the spin // Mon. Notic. Roy. Astron. Soc.—2013.—434. —P. 2999—3007. 14. Bridge C. R., Appleton P. N., Conselice C. J., et al. The role of gal axy in ter ac tions and merg ers in star for ma tion at z = 1.3: Mid-in fra red prop er ties in the Spitzer first look sur vey // Astrophys. J.—2007.—659.—P. 931—940. 15. Choi E., Naab T., Ostriker J. P., et al. Con se quences of me chan i cal and ra di a tive feed - back from black holes in disc gal axy merg ers // Mon. Notic. Roy. Astron. Soc.— 2014.—42.—P. 440—453. 16. Cut ler C. An gu lar res o lu tion of the LISA grav i ta tional wave de tec tor // Phys. Rev. D.—1998.—57.—P. 7089—7102. 17. Damour T. Grav i ta tional ra di a tion and the mo tion of com pact bod ies // Lec ture Notes in Phys ics. — Berlin: Springer Verlag, 1983.—P. 59—144. 18. Damour T., Deruelle N. Gen er al ized lagrangian of two point masses in the post-New to - nian ap prox i ma tion of gen eral-rel a tiv ity // Comptes rendus de l’Academie des Sci. Ser. II.—1981.—293.—P. 537—540. 19. Damour T., Deruelle N. Ra di a tion re ac tion and an gu lar mo men tum loss in small an gle grav i ta tional scat ter ing // Phys. Lett. A.—1981.—87.— P.81—84. 20. Damour T., Deruelle N. The two-body prob lem and ra di a tion damp ing in gen eral- rel a - tiv ity // Comptes rendus de l’Academie des Sci. Ser. II.—1982.—294.—P. 1355— 34 M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI 1357. 21. Damour T., Jaranowski P., Sch&&afer G. Equiv a lence be tween the ADM Hamiltonian and the har monic-co or di nates ap proaches to the third post-New to nian dy nam ics of com pact bi na ries // Phys. Rev. D.—2001.—63 (4).—11 p. 22. Damour T., Sch&&afer G. Lagrangians for n point masses at the sec ond post-New to nian ap prox i ma tion of gen eral rel a tiv ity // Gen. Rel a tiv ity and Grav i ta tion.—1985.— 17.—P. 879—905. 23. de Andrade V. C., Blanchet L., Faye G. Third post-New to nian dy nam ics of com pact bi - na ries: Noetherian con served quan ti ties and equiv a lence be tween the har monic co or - di nate and ADM-Hamiltonian formalisms // Clas si cal and Quan tum Grav ity.— 2001.—18.—P. 753—778. 24. Deruelle N. Sur les Jquations du mouvement et le rayonnement gravitationnel d’un systPme binaire en RelativitJ GJnJrale: PhD the sis. — Paris: UniversitJ Pi erre et Ma - rie Cu rie, 1982. 25. Di Matteo P., Bournaud F., Martig M., et al. On the fre quency, in ten sity, and du ra tion of starburst ep i sodes trig gered by gal axy in ter ac tions and merg ers // Astron. and Astrophys.—2008.—492.—P. 31—49. 26. Faye G., Blanchet L., Buonanno A. Higher-or der spin ef fects in the dy nam ics of com - pact bi na ries. I. Equa tions of mo tion // Phys. Rev. D.—2006.—74, N 10.—19 p. 27. Frank J. Rees M. J. Ef fects of mas sive cen tral black holes on dense stel lar sys tems // Mon. Notic. Roy. Astron. Soc.—1976.—176.—P. 633—647. 28. Governato F., Brook C., Mayer L., et al. Bulgeless dwarf gal ax ies and dark mat ter cores from su per nova-driven out flows // Na ture.—2010.—463.—P. 203—206. 29. Gualandris A., Merritt D. Long-term evo lu tion of mas sive black hole bi na ries. IV. Merg ers of gal ax ies with collisionally re laxed nu clei // Astrophys. J.—2012.— 744, N 1.—21 p. 30. G&&ultekin K., Richstone D. O., Gebhardt K., et al. The M-sigma and M-L re la tions in ga - lac tic bulges, and de ter mi na tions of their in trin sic scat ter // Astrophys. J.—2009.— 698.—P. 198—221. 31. Haehnelt M. G., Kauffmann G. Mul ti ple supermassive black holes in ga lac tic bulges // Mon. Notic. Roy. Astron. Soc.—2002.—336.—P. 61—64. 32. Henon¢ M. H. The Monte Carlo method // Astrophys. and Space Sci.—1971.—14, N 1. —P. 151—167. 33. Hewitson M., Con sor tium eLISA. eLISA: A mis sion to study the en tire uni verse with grav i ta tional waves // Amer. Astron. Soc. Meet ing Ab stracts.—2014.—223.— P. 248. 34. Hirschmann M., Somerville R. S., Naab T., et al. Or i gin of the antihierarchical growth of black holes // Mon. Notic. Roy. Astron. Soc.—2012.—426.—P. 237—257. 35. Ju W., Greene J. E., Rafikov R. R., et al. Search for supermassive black hole bi na ries in the Sloan Dig i tal Sky Sur vey spec tro scopic sam ple // Astrophys. J.—2013.—777.— 16 p. 36. Kauffmann G., Haehnelt M. A uni fied model for the evo lu tion of gal ax ies and qua sars // Mon. Notic. Roy. Astron. Soc.—2000.—311.—P. 576—588. 37. Khan F. M., Berentzen I., Berczik P., et al. For ma tion and hard en ing of supermassive black hole bi na ries in mi nor merg ers of disk gal ax ies // Astrophys. J.—2012.— 756.—10 p. 38. Khan F. M., Holley-Bockelmann K., Berczik P., et al. Supermassive black hole bi nary evo lu tion in axisymmetric gal ax ies: The fi nal parsec prob lem is not a prob lem // Astrophys. J.—2013.—773.—6 p. 39. Khan F. M., Just A., Merritt D. Ef fi cient merger of bi nary supermassive black holes in merg ing gal ax ies // Astrophys. J.—2011.—732.—8 p. 40. Khan F. M., Preto M., Berczik P., et al. Merg ers of un equal-mass gal ax ies: super - 35 FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE massive black hole bi nary evo lu tion and struc ture of merger rem nants // Astrophys. J.—2012.—749.—14 p. 41. Kid der L. E. Co alesc ing bi nary sys tems of com pact ob jects to (post)5/2-New to nian or - der. V. Spin ef fects // Phys. Rev. D.—1995.—52.—P. 821—847. 42. Komossa S. Ob ser va tional ev i dence for supermassive black hole bi na ries // AIP Conf. Proc.—2003.—686.—P. 161—174.—(The as tro phys ics of grav i ta tional wave sources / Ed. J. M. Centrella). 43. Kupi G., Amaro-Seoane P., Spurzem R. Dy nam ics of com pact ob ject clus ters: a post- New to nian study // Mon. Notic. Roy. Astron. Soc.—2006.—371.—P. 45—49. 44. Lin L., Coo per M. C., Jian H.-Y., et al. Where do wet, dry, and mixed gal axy merg ers oc cur? A study of the en vi ron ments of close gal axy pairs in the DEEP2 gal axy red - shift sur vey // Astrophys. J.—2010.—718.—P. 1158—1170. 45. Lin L., Koo D. C., Weiner B. J., et al. AEGIS: En hance ment of dust-en shrouded star for ma tion in close gal axy pairs and merg ing gal ax ies up to z ~ 1 // Astrophys. J.— 2007.—660.—P. 51—54. 46. Lin L., Patton D. R., Koo D. C., et al. The redshift evo lu tion of wet, dry, and mixed gal - axy merg ers from close gal axy pairs in the DEEP2 gal axy redshift sur vey // Astro - phys. J.—2008.—681.—P. 232—243. 47. Liu F. K., Li S., Komossa S. A milliparsec supermassive black hole bi nary can di date in the gal axy SDSS J120136.02 + 300305.5 // Astrophys. J.—2014.—786.—14 p. 48. Mayer L., Kazantzidis S., Escala A., et al. Di rect for ma tion of supermassive black holes via multi-scale gas in flows in gal axy merg ers // Na ture.—2010.—466.—P. 1082— 1084. 49. Merritt D. Brownian mo tion of a mas sive bi nary // Astrophys. J.—2001.—556.— P. 245—264. 50. Merritt D., Milosavljevic¢ M. Mas sive black hole bi nary evo lu tion // Liv. Revs Rel a tiv - ity.—2005.—8.—63 p. 51. Milosavljevic¢ M., Merritt D. For ma tion of ga lac tic nu clei // Astrophys. J.—2001.— 563.—P. 34—62. 52. Milosavljevic¢ M., Merritt D. The fi nal parsec prob lem // AIP Conf. Proc.—2003.—686.—P. 201—210.—(The as tro phys ics of grav i ta tional wave sources / Ed. J. M. Centrella). 53. Nitadori K., Makino J. Sixth- and eighth-or der Hermite in te gra tor for N-body sim u la - tions // New As tron omy.—2008.—13.—P. 498—507. 54. Ohta T., Okamura H., Kimura T., et al. Phys i cally ac cept able so lu tion of Ein stein’s equa tion for many-body sys tem // Progr. Theor. Phys.—1973.— 50.—P. 492—514. 55. Ohta T., Okamura H., Kimura T., et al. Co or di nate con di tion and higher or der grav i ta - tional po ten tial in ca non i cal for mal ism // Progr. Theor. Phys.—1974.—51.— P. 1598—1612. 56. Ohta T., Okamura H., Kimura T., et al. Higher or der grav i ta tional po ten tial for many- body sys tem // Progr. Theor. Phys.—1974.—51.—P. 1220—1238. 57. Overzier R. A., Heckman T. M., Kauffmann G., et al. Hub ble space tele scope mor pho - logies of lo cal Lyman break gal axy analogs. I. Ev i dence for starbursts trig gered by merg ing // Astrophys. J.—2008.—677.—P. 37—62. 58. Pe ters P. C. Grav i ta tional ra di a tion and the mo tion of two point masses // Phys. Rev.—1964.—136.—P. 1224—1232. 59. Pe ters P. C., Mathews J. Grav i ta tional ra di a tion from point masses in a Keplerian or bit // Phys. Rev.—1963.—131.—P. 435—440. 60. Preto M., Berentzen I., Berczik P., et al. Fast co ales cence of mas sive black hole bi na ries from merg ers of ga lac tic nu clei: Im pli ca tions for lowfrequency grav i ta tional-wave as tro phys ics // Astrophys. J.—2011.—732.—6 p. 61. Rodriguez¢ Zaurin¢ J., Tadhunter C. N., Gonzalez¢ Delgado R. M. The prop er ties of the 36 M. SOBOLENKO, P. BERCZIK, R. SPURZEM, G. KUPI stel lar pop u la tions in ULIRGs. II. Star for ma tion his to ries and evo lu tion // Mon. Notic. Roy. Astron. Soc.—2010.—403.—P. 1317—1330. 62. Sathyaprakash B. S., Schutz B. F. Phys ics, as tro phys ics and cos mol ogy with grav i ta - tional waves // Liv. Revs Rel a tiv ity.—2009.—12.—141 p. 63. Sijacki D., Vogelsberger M., Genel S., et al. The Illustris sim u la tion: the evolv ing pop u - la tion of black holes across cos mic time // Mon. Notic. Roy. Astron. Soc.—2015.— 452.—P. 575—596. 64. Silk J., Rees M. J. Qua sars and gal axy for ma tion // Astron. and Astrophys.—1998. —331.—P. 1—4. 65. Soffel M. H. Rel a tiv ity in astrometry, ce les tial me chan ics and ge od esy. — Berlin, Hei - del berg, New York: Springer-Verlag, 1989.—208 p. 66. Tagoshi H., Ohashi A., Owen B. J. Grav i ta tional field and equa tions of mo tion of spin - ning com pact bi na ries to 2.5 post-New to nian or der // Phys. Rev. D.—2001.—63, N 4.—14 p. 67. van Dokkum P. G. The re cent and con tin u ing as sem bly of field el lip ti cal gal ax ies by red merg ers // Astrophys. J.—2005.—130.—P. 2647—2665. 68. Wang L., Berczik P., Spurzem R., et al. The link be tween ejected stars, hard en ing and ec cen tric ity growth of super mas sive black holes in ga lac tic nu clei // Astrophys. J.— 2014.—780.—14 p. 69. Yagi K., Seto N. De tec tor con fig u ra tion of DECIGO/BBO and iden ti fi ca tion of cos mo - log i cal neu tron-star bi na ries // Phys. Rev. D.—2011.—83, N 4.—14 p. 70. Zhong S., Berczik P., Spurzem R. Super mas sive black hole in ga lac tic nu clei with tidal dis rup tion of stars // Astrophys. J.—2014.—792.—17 p. 71. Zinchenko I. A., Berczik P., Grebel E. K., et al. On the in flu ence of mi nor merg ers on the ra dial abun dance gra di ent in disks of milky-way-like gal ax ies // Astrophys. J.— 2015.—806.—17 p. Received 01.04.16 37 FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE