B&B method for discrete partial order and quasiorder optimizations
The paper extends the Branch and Bound (B&B) method to find all nondominated points in a partially or quasiordered space. The B&B method is applied to the so-called constrained partial/quasi order optimization problem, where the feasible set is defined by a family of partial/quasi order co...
Збережено в:
Дата: | 2019 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2019
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/150463 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | B&B method for discrete partial order and quasiorder optimizations / V.I. Norkin // Доповіді Національної академії наук України. — 2019. — № 1. — С. 16-22. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The paper extends the Branch and Bound (B&B) method to find all nondominated points in a partially or quasiordered
space. The B&B method is applied to the so-called constrained partial/quasi order optimization problem,
where the feasible set is defined by a family of partial/quasi order constraints. The framework of the generalized
B&B method is standard, it includes partition, estimation, and pruning steps, but bounds are different, they are setvalued.
For bounding, the method uses a set ordering in the following sense. One set is "less or equal" than the other
set if, for any element of the first set, there is a "greater or equal" element in the second one. In the B&B method,
the partitioning is applied to the parts of the original space with nondominated upper bounds. Parts with small upper
bounds (less than some lower bound) are pruned. Convergence of the method to the set of all nondominated points
is established. The acceleration with respect to the enumerative search is achieved through the group evaluation of
elements of the original space. |
---|