Development of gene expression panels to determine prostate cancer
The aim of this investigation is to prove a modified algorithm for statistical approaches to develop gene expression panels for the detection of prostate tumors. According to Classification and Regression tree models and RE differences between adenocarcinoma (T) and adenoma (A) groups, we have cho...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2019
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/150475 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Development of gene expression panels to determine prostate cancer / G.V. Gerashchenko, A.V. Rynditch, V.I. Kashuba // Доповіді Національної академії наук України. — 2019. — № 1. — С. 100-106. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The aim of this investigation is to prove a modified algorithm for statistical approaches to develop gene expression
panels for the detection of prostate tumors. According to Classification and Regression tree models and RE differences
between adenocarcinoma (T) and adenoma (A) groups, we have chosen 31 transcripts for MDR analysis.
Among them, there were 15 transcripts of (epithelial-mesenchymal transition (EMT) and prostate-cancer associated
(PrCa-associated) genes and 16 transcripts of cancer-associated fibroblasts (CAF), tumor-associated macrophages
(TAM), immune-associated genes (IAG)), which have shown some datasets with high statistical parameters. The
highest diagnostic levels are manifested by expression panels developed from all 5 gene groups: PCA3, HOTAIR,
ESR1, IL1R1 (Se = 0.97, Sp = 0.85, Ac = 0.93, OR = 204); CDH2, KRT18, PCA3, HOTAIR, ESR1, IL1R1 (Se = 1.0,
Sp = 0.8, Ac = 0.93, OR > 500). We propose an improved algorithm for the gene expression data analysis to develop
diagnostic panels with good and excellent diagnostic levels for the prostate tumor stratification in a group of patients
from the Ukrainian population. Our data require a more detailed analysis and a larger cohort of patients with
prostate tumor. |
---|