Оцінювання кредитних ризиків методами інтелектуального анализу даних
Проаналізовано кредитні ризики фінансових організацій за допомогою методів інтелектуального аналізу даних. Фактичні статистичні дані, які характеризують позичальників кредитів, використано для побудови математичних моделей у формі рівнянь типу логіт, дерев рішень і байєсівських мереж. Якість побудов...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2017
|
Назва видання: | Системні дослідження та інформаційні технології |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/151062 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Оцінювання кредитних ризиків методами інтелектуального анализу даних / В.Я. Данилов, О.Л. Жиров, П.І. Бідюк // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 33-48. — Бібліогр.: 9 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-151062 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1510622019-04-24T01:25:33Z Оцінювання кредитних ризиків методами інтелектуального анализу даних Данилов, В.Я. Жиров, О.Л. Бідюк, П.І. Проблеми прийняття рішень і управління в економічних, технічних, екологічних і соціальних системах Проаналізовано кредитні ризики фінансових організацій за допомогою методів інтелектуального аналізу даних. Фактичні статистичні дані, які характеризують позичальників кредитів, використано для побудови математичних моделей у формі рівнянь типу логіт, дерев рішень і байєсівських мереж. Якість побудованих моделей проаналізовано за множиною належних статистичних критеріїв, які забезпечують основу для вибору кращої альтернативної моделі. Із використанням двох вибірок банківських даних виконано ряд обчислювальних експериментів і виявлено кращі моделі у формі рівнянь типу логіт і байєсівські мережі. Передбачається розширити множину методів побудови математичних моделей і реалізувати ідею комбінування оцінок, згенерованих за альтернативними методами. Обґрунтовано доцільність розроблення та реалізацію спеціалізованої системи підтримання прийняття рішень для виконання досліджень у галузі оцінювання та прогнозування фінансових ризиків. Проанализированы кредитные риски финансовых организаций с помощью методов интеллектуального анализа данных. Фактические статистические данные, которые характеризуют заемщиков кредитов, использованы для построения математических моделей в форме уравнений типа логит, деревьев решений и байесовских сетей. Качество построенных моделей проанализировано с помощью множества соответствующих статистических критериев, которые дают основание для выбора лучшей альтернативной модели. С использованием двух выборок банковских данных выполнен ряд вычислительных экспериментов и установлено, что лучшими оказались модели типа логит и байесовские сети. Предусматриваются расширение множества методов построения математических моделей и реализация идеи комбинирования оценок, сгенерированных альтернативними методами. Обоснованы целесообразность разработки и реализация специализированной системы поддержки принятия решений для выполнения исследований в сфере оценивания и прогнозирования финансовых рисков. Проанализированы кредитные риски финансовых организаций с помощью методов интеллектуального анализа данных. Фактические статистические данные, которые характеризуют заемщиков кредитов, использованы для построения математических моделей в форме уравнений типа логит, деревьев решений и байесовских сетей. Качество построенных моделей проанализировано с помощью множества соответствующих статистических критериев, которые дают основание для выбора лучшей альтернативной модели. С использованием двух выборок банковских данных выполнен ряд вычислительных экспериментов и установлено, что лучшими оказались модели типа логит и байесовские сети. Предусматриваются расширение множества методов построения математических моделей и реализация идеи комбинирования оценок, сгенерированных альтернативними методами. Обоснованы целесообразность разработки и реализация специализированной системы поддержки принятия решений для выполнения исследований в сфере оценивания и прогнозирования финансовых рисков. 2017 Article Оцінювання кредитних ризиків методами інтелектуального анализу даних / В.Я. Данилов, О.Л. Жиров, П.І. Бідюк // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 33-48. — Бібліогр.: 9 назв. — укр. 1681–6048 DOI: https://doi.org/10.20535/SRIT.2308-8893.2017.1.03 http://dspace.nbuv.gov.ua/handle/123456789/151062 519.226, 330.322 ru Системні дослідження та інформаційні технології Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Проблеми прийняття рішень і управління в економічних, технічних, екологічних і соціальних системах Проблеми прийняття рішень і управління в економічних, технічних, екологічних і соціальних системах |
spellingShingle |
Проблеми прийняття рішень і управління в економічних, технічних, екологічних і соціальних системах Проблеми прийняття рішень і управління в економічних, технічних, екологічних і соціальних системах Данилов, В.Я. Жиров, О.Л. Бідюк, П.І. Оцінювання кредитних ризиків методами інтелектуального анализу даних Системні дослідження та інформаційні технології |
description |
Проаналізовано кредитні ризики фінансових організацій за допомогою методів інтелектуального аналізу даних. Фактичні статистичні дані, які характеризують позичальників кредитів, використано для побудови математичних моделей у формі рівнянь типу логіт, дерев рішень і байєсівських мереж. Якість побудованих моделей проаналізовано за множиною належних статистичних критеріїв, які забезпечують основу для вибору кращої альтернативної моделі. Із використанням двох вибірок банківських даних виконано ряд обчислювальних експериментів і виявлено кращі моделі у формі рівнянь типу логіт і байєсівські мережі. Передбачається розширити множину методів побудови математичних моделей і реалізувати ідею комбінування оцінок, згенерованих за альтернативними методами. Обґрунтовано доцільність розроблення та реалізацію спеціалізованої системи підтримання прийняття рішень для виконання досліджень у галузі оцінювання та прогнозування фінансових ризиків. |
format |
Article |
author |
Данилов, В.Я. Жиров, О.Л. Бідюк, П.І. |
author_facet |
Данилов, В.Я. Жиров, О.Л. Бідюк, П.І. |
author_sort |
Данилов, В.Я. |
title |
Оцінювання кредитних ризиків методами інтелектуального анализу даних |
title_short |
Оцінювання кредитних ризиків методами інтелектуального анализу даних |
title_full |
Оцінювання кредитних ризиків методами інтелектуального анализу даних |
title_fullStr |
Оцінювання кредитних ризиків методами інтелектуального анализу даних |
title_full_unstemmed |
Оцінювання кредитних ризиків методами інтелектуального анализу даних |
title_sort |
оцінювання кредитних ризиків методами інтелектуального анализу даних |
publisher |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
publishDate |
2017 |
topic_facet |
Проблеми прийняття рішень і управління в економічних, технічних, екологічних і соціальних системах |
url |
http://dspace.nbuv.gov.ua/handle/123456789/151062 |
citation_txt |
Оцінювання кредитних ризиків методами інтелектуального анализу даних / В.Я. Данилов, О.Л. Жиров, П.І. Бідюк // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 33-48. — Бібліогр.: 9 назв. — укр. |
series |
Системні дослідження та інформаційні технології |
work_keys_str_mv |
AT danilovvâ ocínûvannâkreditnihrizikívmetodamiíntelektualʹnogoanalizudanih AT žirovol ocínûvannâkreditnihrizikívmetodamiíntelektualʹnogoanalizudanih AT bídûkpí ocínûvannâkreditnihrizikívmetodamiíntelektualʹnogoanalizudanih |
first_indexed |
2023-05-20T17:36:06Z |
last_indexed |
2023-05-20T17:36:06Z |
_version_ |
1796153664995328000 |