Алгоритм построения бифуркационной картины нелинейной краевой задачи для уравнений Кармана

В рамках нелинейного обобщённого метода Канторовича предложен новый подход к локализации и анализу особых точек решения нелинейной краевой задачи для уравнений Кармана: решение нелинейной краевой задачи сводится к решению последовательности нелинейных краевых задач для обыкновенных дифференциальных...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Громов, В.А.
Формат: Стаття
Мова:Russian
Опубліковано: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2017
Назва видання:Системні дослідження та інформаційні технології
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/151067
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Алгоритм построения бифуркационной картины нелинейной краевой задачи для уравнений Кармана / В.А. Громов // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 97-113. — Бібліогр.: 16 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В рамках нелинейного обобщённого метода Канторовича предложен новый подход к локализации и анализу особых точек решения нелинейной краевой задачи для уравнений Кармана: решение нелинейной краевой задачи сводится к решению последовательности нелинейных краевых задач для обыкновенных дифференциальных уравнений. Одномерные краевые задачи решаются с помощью метода сведения нелинейной краевой задачи к эквивалентной задаче Коши, в процессе реализации которого строится матрица Фреше, вырожденность которой является необходимым и достаточным условием существования ветвления. Численное построение уравнений разветвления позволяет построить ветви, исходящие из точки бифуркации. Вычислительный эксперимент позволил установить бифуркационную картину для случая уравнения Кармана с обобщенной правой частью: решение характеризуются существованием ветвей первичного и вторичного ветвлений.