Алгоритм построения бифуркационной картины нелинейной краевой задачи для уравнений Кармана
В рамках нелинейного обобщённого метода Канторовича предложен новый подход к локализации и анализу особых точек решения нелинейной краевой задачи для уравнений Кармана: решение нелинейной краевой задачи сводится к решению последовательности нелинейных краевых задач для обыкновенных дифференциальных...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2017
|
Назва видання: | Системні дослідження та інформаційні технології |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/151067 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Алгоритм построения бифуркационной картины нелинейной краевой задачи для уравнений Кармана / В.А. Громов // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 97-113. — Бібліогр.: 16 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В рамках нелинейного обобщённого метода Канторовича предложен новый подход к локализации и анализу особых точек решения нелинейной краевой задачи для уравнений Кармана: решение нелинейной краевой задачи сводится к решению последовательности нелинейных краевых задач для обыкновенных дифференциальных уравнений. Одномерные краевые задачи решаются с помощью метода сведения нелинейной краевой задачи к эквивалентной задаче Коши, в процессе реализации которого строится матрица Фреше, вырожденность которой является необходимым и достаточным условием существования ветвления. Численное построение уравнений разветвления позволяет построить ветви, исходящие из точки бифуркации. Вычислительный эксперимент позволил установить бифуркационную картину для случая уравнения Кармана с обобщенной правой частью: решение характеризуются существованием ветвей первичного и вторичного ветвлений. |
---|