Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3DD version always provide decrease of free energy and are unable to mode...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2018
|
Назва видання: | Металлофизика и новейшие технологии |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/151873 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo / A. Gusak, T. Zaporozhets // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 11. — С. 1415-1435. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3DD version always provide decrease of free energy and are unable to model any overcoming of free-energy barrier, including nucleation. To enable nucleation processes within the mean-field models, the introduction of noise is necessary. Contrary to common way of noise introduction (noise of concentration), we introduce the noise of jump frequencies as a basic reason of fluctuations. The new method is called as Stochastic Kinetic Mean Field (SKMF). In this paper, we investigate and compare the dispersion and spatial correlations of concentration fluctuations by three methods—direct Monte Carlo simulation, numeric simulation by SKMF method, and analytic approximation within the scope of SKMF. Comparison confirms the correspondence of frequency noise to the averaging over finite number of Monte Carlo runs (over finite number of copies of the canonical ensemble). |
---|