Algebra in superextensions of semilattices
Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilat...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152184 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152184 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1521842019-06-09T01:25:28Z Algebra in superextensions of semilattices Banakh, T. Gavrylkiv, V. Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches. 2012 Article Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ. 1726-3255 2010 Mathematics Subject Classification: 06A12, 20M10. http://dspace.nbuv.gov.ua/handle/123456789/152184 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches. |
format |
Article |
author |
Banakh, T. Gavrylkiv, V. |
spellingShingle |
Banakh, T. Gavrylkiv, V. Algebra in superextensions of semilattices Algebra and Discrete Mathematics |
author_facet |
Banakh, T. Gavrylkiv, V. |
author_sort |
Banakh, T. |
title |
Algebra in superextensions of semilattices |
title_short |
Algebra in superextensions of semilattices |
title_full |
Algebra in superextensions of semilattices |
title_fullStr |
Algebra in superextensions of semilattices |
title_full_unstemmed |
Algebra in superextensions of semilattices |
title_sort |
algebra in superextensions of semilattices |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152184 |
citation_txt |
Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT banakht algebrainsuperextensionsofsemilattices AT gavrylkivv algebrainsuperextensionsofsemilattices |
first_indexed |
2023-05-20T17:37:40Z |
last_indexed |
2023-05-20T17:37:40Z |
_version_ |
1796153723747041280 |